Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelvv.1 | |- A e. _V |
|
opelvv.2 | |- B e. _V |
||
Assertion | opelvv | |- <. A , B >. e. ( _V X. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvv.1 | |- A e. _V |
|
2 | opelvv.2 | |- B e. _V |
|
3 | opelxpi | |- ( ( A e. _V /\ B e. _V ) -> <. A , B >. e. ( _V X. _V ) ) |
|
4 | 1 2 3 | mp2an | |- <. A , B >. e. ( _V X. _V ) |