Metamath Proof Explorer


Theorem opelvv

Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opelvv.1
|- A e. _V
opelvv.2
|- B e. _V
Assertion opelvv
|- <. A , B >. e. ( _V X. _V )

Proof

Step Hyp Ref Expression
1 opelvv.1
 |-  A e. _V
2 opelvv.2
 |-  B e. _V
3 opelxpi
 |-  ( ( A e. _V /\ B e. _V ) -> <. A , B >. e. ( _V X. _V ) )
4 1 2 3 mp2an
 |-  <. A , B >. e. ( _V X. _V )