Metamath Proof Explorer


Theorem opelxp1

Description: The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opelxp1
|- ( <. A , B >. e. ( C X. D ) -> A e. C )

Proof

Step Hyp Ref Expression
1 opelxp
 |-  ( <. A , B >. e. ( C X. D ) <-> ( A e. C /\ B e. D ) )
2 1 simplbi
 |-  ( <. A , B >. e. ( C X. D ) -> A e. C )