Metamath Proof Explorer


Theorem opelxp2

Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opelxp2
|- ( <. A , B >. e. ( C X. D ) -> B e. D )

Proof

Step Hyp Ref Expression
1 opelxp
 |-  ( <. A , B >. e. ( C X. D ) <-> ( A e. C /\ B e. D ) )
2 1 simprbi
 |-  ( <. A , B >. e. ( C X. D ) -> B e. D )