Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
|- ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) |
2 |
|
2z |
|- 2 e. ZZ |
3 |
|
divides |
|- ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 || B <-> E. b e. ZZ ( b x. 2 ) = B ) ) |
4 |
2 3
|
mpan |
|- ( B e. ZZ -> ( 2 || B <-> E. b e. ZZ ( b x. 2 ) = B ) ) |
5 |
1 4
|
bi2anan9 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) ) ) |
6 |
|
reeanv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) ) |
7 |
|
zaddcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a + b ) e. ZZ ) |
8 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
9 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
10 |
|
2cn |
|- 2 e. CC |
11 |
|
adddi |
|- ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) |
12 |
10 11
|
mp3an1 |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) |
13 |
12
|
oveq1d |
|- ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a + b ) ) + 1 ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + 1 ) ) |
14 |
|
mulcl |
|- ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) |
15 |
10 14
|
mpan |
|- ( a e. CC -> ( 2 x. a ) e. CC ) |
16 |
|
mulcl |
|- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) |
17 |
10 16
|
mpan |
|- ( b e. CC -> ( 2 x. b ) e. CC ) |
18 |
|
ax-1cn |
|- 1 e. CC |
19 |
|
add32 |
|- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( 2 x. b ) ) ) |
20 |
18 19
|
mp3an3 |
|- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( 2 x. b ) ) ) |
21 |
15 17 20
|
syl2an |
|- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( 2 x. b ) ) ) |
22 |
|
mulcom |
|- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) = ( b x. 2 ) ) |
23 |
10 22
|
mpan |
|- ( b e. CC -> ( 2 x. b ) = ( b x. 2 ) ) |
24 |
23
|
adantl |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. b ) = ( b x. 2 ) ) |
25 |
24
|
oveq2d |
|- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) + ( 2 x. b ) ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) ) |
26 |
13 21 25
|
3eqtrd |
|- ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a + b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) ) |
27 |
8 9 26
|
syl2an |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( 2 x. ( a + b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) ) |
28 |
|
oveq2 |
|- ( c = ( a + b ) -> ( 2 x. c ) = ( 2 x. ( a + b ) ) ) |
29 |
28
|
oveq1d |
|- ( c = ( a + b ) -> ( ( 2 x. c ) + 1 ) = ( ( 2 x. ( a + b ) ) + 1 ) ) |
30 |
29
|
eqeq1d |
|- ( c = ( a + b ) -> ( ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) <-> ( ( 2 x. ( a + b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) ) ) |
31 |
30
|
rspcev |
|- ( ( ( a + b ) e. ZZ /\ ( ( 2 x. ( a + b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) ) |
32 |
7 27 31
|
syl2anc |
|- ( ( a e. ZZ /\ b e. ZZ ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) ) |
33 |
|
oveq12 |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) = ( A + B ) ) |
34 |
33
|
eqeq2d |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) <-> ( ( 2 x. c ) + 1 ) = ( A + B ) ) ) |
35 |
34
|
rexbidv |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) + ( b x. 2 ) ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) ) |
36 |
32 35
|
syl5ibcom |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) ) |
37 |
36
|
rexlimivv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) |
38 |
6 37
|
sylbir |
|- ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) |
39 |
5 38
|
syl6bi |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ 2 || B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) ) |
40 |
39
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ 2 || B ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) |
41 |
40
|
an4s |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) |
42 |
|
zaddcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
43 |
42
|
ad2ant2r |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> ( A + B ) e. ZZ ) |
44 |
|
odd2np1 |
|- ( ( A + B ) e. ZZ -> ( -. 2 || ( A + B ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) ) |
45 |
43 44
|
syl |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> ( -. 2 || ( A + B ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A + B ) ) ) |
46 |
41 45
|
mpbird |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> -. 2 || ( A + B ) ) |