| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
|- ( A e. Odd -> A e. ZZ ) |
| 2 |
|
evenz |
|- ( B e. Even -> B e. ZZ ) |
| 3 |
|
zaddcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. Odd /\ B e. Even ) -> ( A + B ) e. ZZ ) |
| 5 |
|
eqeq1 |
|- ( a = A -> ( a = ( ( 2 x. i ) + 1 ) <-> A = ( ( 2 x. i ) + 1 ) ) ) |
| 6 |
5
|
rexbidv |
|- ( a = A -> ( E. i e. ZZ a = ( ( 2 x. i ) + 1 ) <-> E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) ) |
| 7 |
|
dfodd6 |
|- Odd = { a e. ZZ | E. i e. ZZ a = ( ( 2 x. i ) + 1 ) } |
| 8 |
6 7
|
elrab2 |
|- ( A e. Odd <-> ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) ) |
| 9 |
|
eqeq1 |
|- ( b = B -> ( b = ( 2 x. j ) <-> B = ( 2 x. j ) ) ) |
| 10 |
9
|
rexbidv |
|- ( b = B -> ( E. j e. ZZ b = ( 2 x. j ) <-> E. j e. ZZ B = ( 2 x. j ) ) ) |
| 11 |
|
dfeven4 |
|- Even = { b e. ZZ | E. j e. ZZ b = ( 2 x. j ) } |
| 12 |
10 11
|
elrab2 |
|- ( B e. Even <-> ( B e. ZZ /\ E. j e. ZZ B = ( 2 x. j ) ) ) |
| 13 |
|
zaddcl |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( i + j ) e. ZZ ) |
| 14 |
13
|
ex |
|- ( i e. ZZ -> ( j e. ZZ -> ( i + j ) e. ZZ ) ) |
| 15 |
14
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( j e. ZZ -> ( i + j ) e. ZZ ) ) |
| 16 |
15
|
imp |
|- ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( i + j ) e. ZZ ) |
| 17 |
16
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( i + j ) e. ZZ ) |
| 18 |
|
oveq2 |
|- ( n = ( i + j ) -> ( 2 x. n ) = ( 2 x. ( i + j ) ) ) |
| 19 |
18
|
oveq1d |
|- ( n = ( i + j ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. ( i + j ) ) + 1 ) ) |
| 20 |
19
|
eqeq2d |
|- ( n = ( i + j ) -> ( ( A + B ) = ( ( 2 x. n ) + 1 ) <-> ( A + B ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) |
| 21 |
20
|
adantl |
|- ( ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) /\ n = ( i + j ) ) -> ( ( A + B ) = ( ( 2 x. n ) + 1 ) <-> ( A + B ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) |
| 22 |
|
oveq12 |
|- ( ( A = ( ( 2 x. i ) + 1 ) /\ B = ( 2 x. j ) ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) |
| 23 |
22
|
ex |
|- ( A = ( ( 2 x. i ) + 1 ) -> ( B = ( 2 x. j ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) ) |
| 24 |
23
|
ad3antlr |
|- ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( B = ( 2 x. j ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) ) |
| 25 |
24
|
imp |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) |
| 26 |
|
2cnd |
|- ( ( j e. ZZ /\ i e. ZZ ) -> 2 e. CC ) |
| 27 |
|
zcn |
|- ( i e. ZZ -> i e. CC ) |
| 28 |
27
|
adantl |
|- ( ( j e. ZZ /\ i e. ZZ ) -> i e. CC ) |
| 29 |
26 28
|
mulcld |
|- ( ( j e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) e. CC ) |
| 30 |
29
|
ancoms |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( 2 x. i ) e. CC ) |
| 31 |
|
1cnd |
|- ( ( i e. ZZ /\ j e. ZZ ) -> 1 e. CC ) |
| 32 |
|
2cnd |
|- ( i e. ZZ -> 2 e. CC ) |
| 33 |
|
zcn |
|- ( j e. ZZ -> j e. CC ) |
| 34 |
|
mulcl |
|- ( ( 2 e. CC /\ j e. CC ) -> ( 2 x. j ) e. CC ) |
| 35 |
32 33 34
|
syl2an |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( 2 x. j ) e. CC ) |
| 36 |
30 31 35
|
add32d |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( ( 2 x. i ) + ( 2 x. j ) ) + 1 ) ) |
| 37 |
|
2cnd |
|- ( ( i e. ZZ /\ j e. ZZ ) -> 2 e. CC ) |
| 38 |
27
|
adantr |
|- ( ( i e. ZZ /\ j e. ZZ ) -> i e. CC ) |
| 39 |
33
|
adantl |
|- ( ( i e. ZZ /\ j e. ZZ ) -> j e. CC ) |
| 40 |
37 38 39
|
adddid |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( 2 x. ( i + j ) ) = ( ( 2 x. i ) + ( 2 x. j ) ) ) |
| 41 |
40
|
eqcomd |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( ( 2 x. i ) + ( 2 x. j ) ) = ( 2 x. ( i + j ) ) ) |
| 42 |
41
|
oveq1d |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( ( ( 2 x. i ) + ( 2 x. j ) ) + 1 ) = ( ( 2 x. ( i + j ) ) + 1 ) ) |
| 43 |
36 42
|
eqtrd |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) |
| 44 |
43
|
ex |
|- ( i e. ZZ -> ( j e. ZZ -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) |
| 45 |
44
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( j e. ZZ -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) |
| 46 |
45
|
imp |
|- ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) |
| 47 |
46
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) |
| 48 |
25 47
|
eqtrd |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( A + B ) = ( ( 2 x. ( i + j ) ) + 1 ) ) |
| 49 |
17 21 48
|
rspcedvd |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) |
| 50 |
49
|
rexlimdva2 |
|- ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( E. j e. ZZ B = ( 2 x. j ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 51 |
50
|
expimpd |
|- ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) -> ( ( B e. ZZ /\ E. j e. ZZ B = ( 2 x. j ) ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 52 |
51
|
r19.29an |
|- ( ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) -> ( ( B e. ZZ /\ E. j e. ZZ B = ( 2 x. j ) ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 53 |
12 52
|
biimtrid |
|- ( ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) -> ( B e. Even -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 54 |
8 53
|
sylbi |
|- ( A e. Odd -> ( B e. Even -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 55 |
54
|
imp |
|- ( ( A e. Odd /\ B e. Even ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) |
| 56 |
|
eqeq1 |
|- ( z = ( A + B ) -> ( z = ( ( 2 x. n ) + 1 ) <-> ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 57 |
56
|
rexbidv |
|- ( z = ( A + B ) -> ( E. n e. ZZ z = ( ( 2 x. n ) + 1 ) <-> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 58 |
|
dfodd6 |
|- Odd = { z e. ZZ | E. n e. ZZ z = ( ( 2 x. n ) + 1 ) } |
| 59 |
57 58
|
elrab2 |
|- ( ( A + B ) e. Odd <-> ( ( A + B ) e. ZZ /\ E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) |
| 60 |
4 55 59
|
sylanbrc |
|- ( ( A e. Odd /\ B e. Even ) -> ( A + B ) e. Odd ) |