Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006) (Proof shortened by Eric Schmidt, 4-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opeq1i.1 | |- A = B |
|
opeq12i.2 | |- C = D |
||
Assertion | opeq12i | |- <. A , C >. = <. B , D >. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | |- A = B |
|
2 | opeq12i.2 | |- C = D |
|
3 | opeq12 | |- ( ( A = B /\ C = D ) -> <. A , C >. = <. B , D >. ) |
|
4 | 1 2 3 | mp2an | |- <. A , C >. = <. B , D >. |