Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006) (Proof shortened by Eric Schmidt, 4-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeq1i.1 | |- A = B | |
| opeq12i.2 | |- C = D | ||
| Assertion | opeq12i | |- <. A , C >. = <. B , D >. | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeq1i.1 | |- A = B | |
| 2 | opeq12i.2 | |- C = D | |
| 3 | opeq12 | |- ( ( A = B /\ C = D ) -> <. A , C >. = <. B , D >. ) | |
| 4 | 1 2 3 | mp2an | |- <. A , C >. = <. B , D >. |