Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opeq1d.1 | |- ( ph -> A = B ) |
|
| Assertion | opeq2d | |- ( ph -> <. C , A >. = <. C , B >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | |- ( ph -> A = B ) |
|
| 2 | opeq2 | |- ( A = B -> <. C , A >. = <. C , B >. ) |
|
| 3 | 1 2 | syl | |- ( ph -> <. C , A >. = <. C , B >. ) |