Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opeq1i.1 | |- A = B |
|
| Assertion | opeq2i | |- <. C , A >. = <. C , B >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | |- A = B |
|
| 2 | opeq2 | |- ( A = B -> <. C , A >. = <. C , B >. ) |
|
| 3 | 1 2 | ax-mp | |- <. C , A >. = <. C , B >. |