Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opeqex | |- ( <. A , B >. = <. C , D >. -> ( ( A e. _V /\ B e. _V ) <-> ( C e. _V /\ D e. _V ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neeq1 | |- ( <. A , B >. = <. C , D >. -> ( <. A , B >. =/= (/) <-> <. C , D >. =/= (/) ) ) | |
| 2 | opnz | |- ( <. A , B >. =/= (/) <-> ( A e. _V /\ B e. _V ) ) | |
| 3 | opnz | |- ( <. C , D >. =/= (/) <-> ( C e. _V /\ D e. _V ) ) | |
| 4 | 1 2 3 | 3bitr3g | |- ( <. A , B >. = <. C , D >. -> ( ( A e. _V /\ B e. _V ) <-> ( C e. _V /\ D e. _V ) ) ) |