Metamath Proof Explorer


Theorem opeqex

Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008)

Ref Expression
Assertion opeqex
|- ( <. A , B >. = <. C , D >. -> ( ( A e. _V /\ B e. _V ) <-> ( C e. _V /\ D e. _V ) ) )

Proof

Step Hyp Ref Expression
1 neeq1
 |-  ( <. A , B >. = <. C , D >. -> ( <. A , B >. =/= (/) <-> <. C , D >. =/= (/) ) )
2 opnz
 |-  ( <. A , B >. =/= (/) <-> ( A e. _V /\ B e. _V ) )
3 opnz
 |-  ( <. C , D >. =/= (/) <-> ( C e. _V /\ D e. _V ) )
4 1 2 3 3bitr3g
 |-  ( <. A , B >. = <. C , D >. -> ( ( A e. _V /\ B e. _V ) <-> ( C e. _V /\ D e. _V ) ) )