Metamath Proof Explorer


Theorem opeqsn

Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses opeqsn.1
|- A e. _V
opeqsn.2
|- B e. _V
Assertion opeqsn
|- ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) )

Proof

Step Hyp Ref Expression
1 opeqsn.1
 |-  A e. _V
2 opeqsn.2
 |-  B e. _V
3 opeqsng
 |-  ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) ) )
4 1 2 3 mp2an
 |-  ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) )