Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opeqsn.1 | |- A e. _V |
|
opeqsn.2 | |- B e. _V |
||
Assertion | opeqsn | |- ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqsn.1 | |- A e. _V |
|
2 | opeqsn.2 | |- B e. _V |
|
3 | opeqsng | |- ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) ) |