Metamath Proof Explorer


Theorem opfi1ind

Description: Properties of an ordered pair with a finite first component, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, e.g., fusgrfis . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses opfi1ind.e
|- E e. _V
opfi1ind.f
|- F e. _V
opfi1ind.1
|- ( ( v = V /\ e = E ) -> ( ps <-> ph ) )
opfi1ind.2
|- ( ( v = w /\ e = f ) -> ( ps <-> th ) )
opfi1ind.3
|- ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G )
opfi1ind.4
|- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) )
opfi1ind.base
|- ( ( <. v , e >. e. G /\ ( # ` v ) = 0 ) -> ps )
opfi1ind.step
|- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps )
Assertion opfi1ind
|- ( ( <. V , E >. e. G /\ V e. Fin ) -> ph )

Proof

Step Hyp Ref Expression
1 opfi1ind.e
 |-  E e. _V
2 opfi1ind.f
 |-  F e. _V
3 opfi1ind.1
 |-  ( ( v = V /\ e = E ) -> ( ps <-> ph ) )
4 opfi1ind.2
 |-  ( ( v = w /\ e = f ) -> ( ps <-> th ) )
5 opfi1ind.3
 |-  ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G )
6 opfi1ind.4
 |-  ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) )
7 opfi1ind.base
 |-  ( ( <. v , e >. e. G /\ ( # ` v ) = 0 ) -> ps )
8 opfi1ind.step
 |-  ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps )
9 hashge0
 |-  ( V e. Fin -> 0 <_ ( # ` V ) )
10 9 adantl
 |-  ( ( <. V , E >. e. G /\ V e. Fin ) -> 0 <_ ( # ` V ) )
11 0nn0
 |-  0 e. NN0
12 1 2 11 3 4 5 6 7 8 opfi1uzind
 |-  ( ( <. V , E >. e. G /\ V e. Fin /\ 0 <_ ( # ` V ) ) -> ph )
13 10 12 mpd3an3
 |-  ( ( <. V , E >. e. G /\ V e. Fin ) -> ph )