Description: Properties of an ordered pair with a finite first component, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, e.g., fusgrfis . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opfi1ind.e | |- E e. _V |
|
opfi1ind.f | |- F e. _V |
||
opfi1ind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
||
opfi1ind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
||
opfi1ind.3 | |- ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) |
||
opfi1ind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
||
opfi1ind.base | |- ( ( <. v , e >. e. G /\ ( # ` v ) = 0 ) -> ps ) |
||
opfi1ind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
||
Assertion | opfi1ind | |- ( ( <. V , E >. e. G /\ V e. Fin ) -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opfi1ind.e | |- E e. _V |
|
2 | opfi1ind.f | |- F e. _V |
|
3 | opfi1ind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
|
4 | opfi1ind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
|
5 | opfi1ind.3 | |- ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) |
|
6 | opfi1ind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
|
7 | opfi1ind.base | |- ( ( <. v , e >. e. G /\ ( # ` v ) = 0 ) -> ps ) |
|
8 | opfi1ind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
|
9 | hashge0 | |- ( V e. Fin -> 0 <_ ( # ` V ) ) |
|
10 | 9 | adantl | |- ( ( <. V , E >. e. G /\ V e. Fin ) -> 0 <_ ( # ` V ) ) |
11 | 0nn0 | |- 0 e. NN0 |
|
12 | 1 2 11 3 4 5 6 7 8 | opfi1uzind | |- ( ( <. V , E >. e. G /\ V e. Fin /\ 0 <_ ( # ` V ) ) -> ph ) |
13 | 10 12 | mpd3an3 | |- ( ( <. V , E >. e. G /\ V e. Fin ) -> ph ) |