| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opfi1uzind.e |  |-  E e. _V | 
						
							| 2 |  | opfi1uzind.f |  |-  F e. _V | 
						
							| 3 |  | opfi1uzind.l |  |-  L e. NN0 | 
						
							| 4 |  | opfi1uzind.1 |  |-  ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) | 
						
							| 5 |  | opfi1uzind.2 |  |-  ( ( v = w /\ e = f ) -> ( ps <-> th ) ) | 
						
							| 6 |  | opfi1uzind.3 |  |-  ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) | 
						
							| 7 |  | opfi1uzind.4 |  |-  ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) | 
						
							| 8 |  | opfi1uzind.base |  |-  ( ( <. v , e >. e. G /\ ( # ` v ) = L ) -> ps ) | 
						
							| 9 |  | opfi1uzind.step |  |-  ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) | 
						
							| 10 | 1 | a1i |  |-  ( a = V -> E e. _V ) | 
						
							| 11 |  | opeq12 |  |-  ( ( a = V /\ b = E ) -> <. a , b >. = <. V , E >. ) | 
						
							| 12 | 11 | eleq1d |  |-  ( ( a = V /\ b = E ) -> ( <. a , b >. e. G <-> <. V , E >. e. G ) ) | 
						
							| 13 | 10 12 | sbcied |  |-  ( a = V -> ( [. E / b ]. <. a , b >. e. G <-> <. V , E >. e. G ) ) | 
						
							| 14 | 13 | sbcieg |  |-  ( V e. Fin -> ( [. V / a ]. [. E / b ]. <. a , b >. e. G <-> <. V , E >. e. G ) ) | 
						
							| 15 | 14 | biimparc |  |-  ( ( <. V , E >. e. G /\ V e. Fin ) -> [. V / a ]. [. E / b ]. <. a , b >. e. G ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( <. V , E >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> [. V / a ]. [. E / b ]. <. a , b >. e. G ) | 
						
							| 17 |  | vex |  |-  v e. _V | 
						
							| 18 |  | vex |  |-  e e. _V | 
						
							| 19 |  | opeq12 |  |-  ( ( a = v /\ b = e ) -> <. a , b >. = <. v , e >. ) | 
						
							| 20 | 19 | eleq1d |  |-  ( ( a = v /\ b = e ) -> ( <. a , b >. e. G <-> <. v , e >. e. G ) ) | 
						
							| 21 | 17 18 20 | sbc2ie |  |-  ( [. v / a ]. [. e / b ]. <. a , b >. e. G <-> <. v , e >. e. G ) | 
						
							| 22 | 21 6 | sylanb |  |-  ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) | 
						
							| 23 | 17 | difexi |  |-  ( v \ { n } ) e. _V | 
						
							| 24 |  | opeq12 |  |-  ( ( a = ( v \ { n } ) /\ b = F ) -> <. a , b >. = <. ( v \ { n } ) , F >. ) | 
						
							| 25 | 24 | eleq1d |  |-  ( ( a = ( v \ { n } ) /\ b = F ) -> ( <. a , b >. e. G <-> <. ( v \ { n } ) , F >. e. G ) ) | 
						
							| 26 | 23 2 25 | sbc2ie |  |-  ( [. ( v \ { n } ) / a ]. [. F / b ]. <. a , b >. e. G <-> <. ( v \ { n } ) , F >. e. G ) | 
						
							| 27 | 22 26 | sylibr |  |-  ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ n e. v ) -> [. ( v \ { n } ) / a ]. [. F / b ]. <. a , b >. e. G ) | 
						
							| 28 | 21 8 | sylanb |  |-  ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = L ) -> ps ) | 
						
							| 29 | 21 | 3anbi1i |  |-  ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) <-> ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) | 
						
							| 30 | 29 | anbi2i |  |-  ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) <-> ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) | 
						
							| 31 | 30 9 | sylanb |  |-  ( ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) | 
						
							| 32 | 2 3 4 5 27 7 28 31 | fi1uzind |  |-  ( ( [. V / a ]. [. E / b ]. <. a , b >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) | 
						
							| 33 | 16 32 | syld3an1 |  |-  ( ( <. V , E >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |