Step |
Hyp |
Ref |
Expression |
1 |
|
opfi1uzind.e |
|- E e. _V |
2 |
|
opfi1uzind.f |
|- F e. _V |
3 |
|
opfi1uzind.l |
|- L e. NN0 |
4 |
|
opfi1uzind.1 |
|- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
5 |
|
opfi1uzind.2 |
|- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
6 |
|
opfi1uzind.3 |
|- ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) |
7 |
|
opfi1uzind.4 |
|- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
8 |
|
opfi1uzind.base |
|- ( ( <. v , e >. e. G /\ ( # ` v ) = L ) -> ps ) |
9 |
|
opfi1uzind.step |
|- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
10 |
1
|
a1i |
|- ( a = V -> E e. _V ) |
11 |
|
opeq12 |
|- ( ( a = V /\ b = E ) -> <. a , b >. = <. V , E >. ) |
12 |
11
|
eleq1d |
|- ( ( a = V /\ b = E ) -> ( <. a , b >. e. G <-> <. V , E >. e. G ) ) |
13 |
10 12
|
sbcied |
|- ( a = V -> ( [. E / b ]. <. a , b >. e. G <-> <. V , E >. e. G ) ) |
14 |
13
|
sbcieg |
|- ( V e. Fin -> ( [. V / a ]. [. E / b ]. <. a , b >. e. G <-> <. V , E >. e. G ) ) |
15 |
14
|
biimparc |
|- ( ( <. V , E >. e. G /\ V e. Fin ) -> [. V / a ]. [. E / b ]. <. a , b >. e. G ) |
16 |
15
|
3adant3 |
|- ( ( <. V , E >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> [. V / a ]. [. E / b ]. <. a , b >. e. G ) |
17 |
|
vex |
|- v e. _V |
18 |
|
vex |
|- e e. _V |
19 |
|
opeq12 |
|- ( ( a = v /\ b = e ) -> <. a , b >. = <. v , e >. ) |
20 |
19
|
eleq1d |
|- ( ( a = v /\ b = e ) -> ( <. a , b >. e. G <-> <. v , e >. e. G ) ) |
21 |
17 18 20
|
sbc2ie |
|- ( [. v / a ]. [. e / b ]. <. a , b >. e. G <-> <. v , e >. e. G ) |
22 |
21 6
|
sylanb |
|- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) |
23 |
17
|
difexi |
|- ( v \ { n } ) e. _V |
24 |
|
opeq12 |
|- ( ( a = ( v \ { n } ) /\ b = F ) -> <. a , b >. = <. ( v \ { n } ) , F >. ) |
25 |
24
|
eleq1d |
|- ( ( a = ( v \ { n } ) /\ b = F ) -> ( <. a , b >. e. G <-> <. ( v \ { n } ) , F >. e. G ) ) |
26 |
23 2 25
|
sbc2ie |
|- ( [. ( v \ { n } ) / a ]. [. F / b ]. <. a , b >. e. G <-> <. ( v \ { n } ) , F >. e. G ) |
27 |
22 26
|
sylibr |
|- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ n e. v ) -> [. ( v \ { n } ) / a ]. [. F / b ]. <. a , b >. e. G ) |
28 |
21 8
|
sylanb |
|- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = L ) -> ps ) |
29 |
21
|
3anbi1i |
|- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) <-> ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) |
30 |
29
|
anbi2i |
|- ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) <-> ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) |
31 |
30 9
|
sylanb |
|- ( ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
32 |
2 3 4 5 27 7 28 31
|
fi1uzind |
|- ( ( [. V / a ]. [. E / b ]. <. a , b >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |
33 |
16 32
|
syld3an1 |
|- ( ( <. V , E >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |