Metamath Proof Explorer


Theorem opid

Description: The ordered pair <. A , A >. in Kuratowski's representation. Inference form of opidg . (Contributed by FL, 28-Dec-2011) (Proof shortened by AV, 16-Feb-2022) (Avoid depending on this detail.)

Ref Expression
Hypothesis opid.1
|- A e. _V
Assertion opid
|- <. A , A >. = { { A } }

Proof

Step Hyp Ref Expression
1 opid.1
 |-  A e. _V
2 opidg
 |-  ( A e. _V -> <. A , A >. = { { A } } )
3 1 2 ax-mp
 |-  <. A , A >. = { { A } }