| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opidon2OLD.1 |
|- X = ran G |
| 2 |
|
eqid |
|- dom dom G = dom dom G |
| 3 |
2
|
opidonOLD |
|- ( G e. ( Magma i^i ExId ) -> G : ( dom dom G X. dom dom G ) -onto-> dom dom G ) |
| 4 |
|
forn |
|- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> ran G = dom dom G ) |
| 5 |
1 4
|
eqtr2id |
|- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> dom dom G = X ) |
| 6 |
|
xpeq12 |
|- ( ( dom dom G = X /\ dom dom G = X ) -> ( dom dom G X. dom dom G ) = ( X X. X ) ) |
| 7 |
6
|
anidms |
|- ( dom dom G = X -> ( dom dom G X. dom dom G ) = ( X X. X ) ) |
| 8 |
|
foeq2 |
|- ( ( dom dom G X. dom dom G ) = ( X X. X ) -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> dom dom G ) ) |
| 9 |
7 8
|
syl |
|- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> dom dom G ) ) |
| 10 |
|
foeq3 |
|- ( dom dom G = X -> ( G : ( X X. X ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> X ) ) |
| 11 |
9 10
|
bitrd |
|- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> X ) ) |
| 12 |
11
|
biimpd |
|- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> G : ( X X. X ) -onto-> X ) ) |
| 13 |
5 12
|
mpcom |
|- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> G : ( X X. X ) -onto-> X ) |
| 14 |
3 13
|
syl |
|- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |