Step |
Hyp |
Ref |
Expression |
1 |
|
opidon2OLD.1 |
|- X = ran G |
2 |
|
eqid |
|- dom dom G = dom dom G |
3 |
2
|
opidonOLD |
|- ( G e. ( Magma i^i ExId ) -> G : ( dom dom G X. dom dom G ) -onto-> dom dom G ) |
4 |
|
forn |
|- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> ran G = dom dom G ) |
5 |
1 4
|
eqtr2id |
|- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> dom dom G = X ) |
6 |
|
xpeq12 |
|- ( ( dom dom G = X /\ dom dom G = X ) -> ( dom dom G X. dom dom G ) = ( X X. X ) ) |
7 |
6
|
anidms |
|- ( dom dom G = X -> ( dom dom G X. dom dom G ) = ( X X. X ) ) |
8 |
|
foeq2 |
|- ( ( dom dom G X. dom dom G ) = ( X X. X ) -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> dom dom G ) ) |
9 |
7 8
|
syl |
|- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> dom dom G ) ) |
10 |
|
foeq3 |
|- ( dom dom G = X -> ( G : ( X X. X ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> X ) ) |
11 |
9 10
|
bitrd |
|- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> X ) ) |
12 |
11
|
biimpd |
|- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> G : ( X X. X ) -onto-> X ) ) |
13 |
5 12
|
mpcom |
|- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> G : ( X X. X ) -onto-> X ) |
14 |
3 13
|
syl |
|- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |