Metamath Proof Explorer


Theorem opiedgov

Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020)

Ref Expression
Assertion opiedgov
|- ( ( V e. X /\ E e. Y ) -> ( V iEdg E ) = E )

Proof

Step Hyp Ref Expression
1 df-ov
 |-  ( V iEdg E ) = ( iEdg ` <. V , E >. )
2 opiedgfv
 |-  ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E )
3 1 2 syl5eq
 |-  ( ( V e. X /\ E e. Y ) -> ( V iEdg E ) = E )