| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opiota.1 |
|- I = ( iota z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) ) |
| 2 |
|
opiota.2 |
|- X = ( 1st ` I ) |
| 3 |
|
opiota.3 |
|- Y = ( 2nd ` I ) |
| 4 |
|
opiota.4 |
|- ( x = C -> ( ph <-> ps ) ) |
| 5 |
|
opiota.5 |
|- ( y = D -> ( ps <-> ch ) ) |
| 6 |
4 5
|
ceqsrex2v |
|- ( ( C e. A /\ D e. B ) -> ( E. x e. A E. y e. B ( ( x = C /\ y = D ) /\ ph ) <-> ch ) ) |
| 7 |
6
|
bicomd |
|- ( ( C e. A /\ D e. B ) -> ( ch <-> E. x e. A E. y e. B ( ( x = C /\ y = D ) /\ ph ) ) ) |
| 8 |
|
opex |
|- <. C , D >. e. _V |
| 9 |
8
|
a1i |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> <. C , D >. e. _V ) |
| 10 |
|
id |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) ) |
| 11 |
|
eqeq1 |
|- ( z = <. C , D >. -> ( z = <. x , y >. <-> <. C , D >. = <. x , y >. ) ) |
| 12 |
|
eqcom |
|- ( <. C , D >. = <. x , y >. <-> <. x , y >. = <. C , D >. ) |
| 13 |
|
vex |
|- x e. _V |
| 14 |
|
vex |
|- y e. _V |
| 15 |
13 14
|
opth |
|- ( <. x , y >. = <. C , D >. <-> ( x = C /\ y = D ) ) |
| 16 |
12 15
|
bitri |
|- ( <. C , D >. = <. x , y >. <-> ( x = C /\ y = D ) ) |
| 17 |
11 16
|
bitrdi |
|- ( z = <. C , D >. -> ( z = <. x , y >. <-> ( x = C /\ y = D ) ) ) |
| 18 |
17
|
anbi1d |
|- ( z = <. C , D >. -> ( ( z = <. x , y >. /\ ph ) <-> ( ( x = C /\ y = D ) /\ ph ) ) ) |
| 19 |
18
|
2rexbidv |
|- ( z = <. C , D >. -> ( E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) <-> E. x e. A E. y e. B ( ( x = C /\ y = D ) /\ ph ) ) ) |
| 20 |
19
|
adantl |
|- ( ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) /\ z = <. C , D >. ) -> ( E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) <-> E. x e. A E. y e. B ( ( x = C /\ y = D ) /\ ph ) ) ) |
| 21 |
|
nfeu1 |
|- F/ z E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) |
| 22 |
|
nfvd |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> F/ z E. x e. A E. y e. B ( ( x = C /\ y = D ) /\ ph ) ) |
| 23 |
|
nfcvd |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> F/_ z <. C , D >. ) |
| 24 |
9 10 20 21 22 23
|
iota2df |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( E. x e. A E. y e. B ( ( x = C /\ y = D ) /\ ph ) <-> ( iota z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) ) = <. C , D >. ) ) |
| 25 |
|
eqcom |
|- ( <. C , D >. = I <-> I = <. C , D >. ) |
| 26 |
1
|
eqeq1i |
|- ( I = <. C , D >. <-> ( iota z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) ) = <. C , D >. ) |
| 27 |
25 26
|
bitri |
|- ( <. C , D >. = I <-> ( iota z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) ) = <. C , D >. ) |
| 28 |
24 27
|
bitr4di |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( E. x e. A E. y e. B ( ( x = C /\ y = D ) /\ ph ) <-> <. C , D >. = I ) ) |
| 29 |
7 28
|
sylan9bbr |
|- ( ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) /\ ( C e. A /\ D e. B ) ) -> ( ch <-> <. C , D >. = I ) ) |
| 30 |
29
|
pm5.32da |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( ( ( C e. A /\ D e. B ) /\ ch ) <-> ( ( C e. A /\ D e. B ) /\ <. C , D >. = I ) ) ) |
| 31 |
|
opelxpi |
|- ( ( x e. A /\ y e. B ) -> <. x , y >. e. ( A X. B ) ) |
| 32 |
|
simpl |
|- ( ( z = <. x , y >. /\ ph ) -> z = <. x , y >. ) |
| 33 |
32
|
eleq1d |
|- ( ( z = <. x , y >. /\ ph ) -> ( z e. ( A X. B ) <-> <. x , y >. e. ( A X. B ) ) ) |
| 34 |
31 33
|
syl5ibrcom |
|- ( ( x e. A /\ y e. B ) -> ( ( z = <. x , y >. /\ ph ) -> z e. ( A X. B ) ) ) |
| 35 |
34
|
rexlimivv |
|- ( E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> z e. ( A X. B ) ) |
| 36 |
35
|
abssi |
|- { z | E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) } C_ ( A X. B ) |
| 37 |
|
iotacl |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( iota z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) ) e. { z | E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) } ) |
| 38 |
36 37
|
sselid |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( iota z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) ) e. ( A X. B ) ) |
| 39 |
1 38
|
eqeltrid |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> I e. ( A X. B ) ) |
| 40 |
|
opelxp |
|- ( <. C , D >. e. ( A X. B ) <-> ( C e. A /\ D e. B ) ) |
| 41 |
|
eleq1 |
|- ( <. C , D >. = I -> ( <. C , D >. e. ( A X. B ) <-> I e. ( A X. B ) ) ) |
| 42 |
40 41
|
bitr3id |
|- ( <. C , D >. = I -> ( ( C e. A /\ D e. B ) <-> I e. ( A X. B ) ) ) |
| 43 |
39 42
|
syl5ibrcom |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( <. C , D >. = I -> ( C e. A /\ D e. B ) ) ) |
| 44 |
43
|
pm4.71rd |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( <. C , D >. = I <-> ( ( C e. A /\ D e. B ) /\ <. C , D >. = I ) ) ) |
| 45 |
|
1st2nd2 |
|- ( I e. ( A X. B ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
| 46 |
39 45
|
syl |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
| 47 |
46
|
eqeq2d |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( <. C , D >. = I <-> <. C , D >. = <. ( 1st ` I ) , ( 2nd ` I ) >. ) ) |
| 48 |
30 44 47
|
3bitr2d |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( ( ( C e. A /\ D e. B ) /\ ch ) <-> <. C , D >. = <. ( 1st ` I ) , ( 2nd ` I ) >. ) ) |
| 49 |
|
df-3an |
|- ( ( C e. A /\ D e. B /\ ch ) <-> ( ( C e. A /\ D e. B ) /\ ch ) ) |
| 50 |
2
|
eqeq2i |
|- ( C = X <-> C = ( 1st ` I ) ) |
| 51 |
3
|
eqeq2i |
|- ( D = Y <-> D = ( 2nd ` I ) ) |
| 52 |
50 51
|
anbi12i |
|- ( ( C = X /\ D = Y ) <-> ( C = ( 1st ` I ) /\ D = ( 2nd ` I ) ) ) |
| 53 |
|
fvex |
|- ( 1st ` I ) e. _V |
| 54 |
|
fvex |
|- ( 2nd ` I ) e. _V |
| 55 |
53 54
|
opth2 |
|- ( <. C , D >. = <. ( 1st ` I ) , ( 2nd ` I ) >. <-> ( C = ( 1st ` I ) /\ D = ( 2nd ` I ) ) ) |
| 56 |
52 55
|
bitr4i |
|- ( ( C = X /\ D = Y ) <-> <. C , D >. = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
| 57 |
48 49 56
|
3bitr4g |
|- ( E! z E. x e. A E. y e. B ( z = <. x , y >. /\ ph ) -> ( ( C e. A /\ D e. B /\ ch ) <-> ( C = X /\ D = Y ) ) ) |