Step |
Hyp |
Ref |
Expression |
1 |
|
opcon3.b |
|- B = ( Base ` K ) |
2 |
|
opcon3.l |
|- .<_ = ( le ` K ) |
3 |
|
opcon3.o |
|- ._|_ = ( oc ` K ) |
4 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
5 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
6 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
7 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
8 |
1 2 3 4 5 6 7
|
oposlem |
|- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X .<_ Y -> ( ._|_ ` Y ) .<_ ( ._|_ ` X ) ) ) /\ ( X ( join ` K ) ( ._|_ ` X ) ) = ( 1. ` K ) /\ ( X ( meet ` K ) ( ._|_ ` X ) ) = ( 0. ` K ) ) ) |
9 |
8
|
simp1d |
|- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X .<_ Y -> ( ._|_ ` Y ) .<_ ( ._|_ ` X ) ) ) ) |
10 |
9
|
simp3d |
|- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> ( ._|_ ` Y ) .<_ ( ._|_ ` X ) ) ) |