| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oplem1.1 |
|- ( ph -> ( ps \/ ch ) ) |
| 2 |
|
oplem1.2 |
|- ( ph -> ( th \/ ta ) ) |
| 3 |
|
oplem1.3 |
|- ( ps <-> th ) |
| 4 |
|
oplem1.4 |
|- ( ch -> ( th <-> ta ) ) |
| 5 |
3
|
notbii |
|- ( -. ps <-> -. th ) |
| 6 |
1
|
ord |
|- ( ph -> ( -. ps -> ch ) ) |
| 7 |
5 6
|
biimtrrid |
|- ( ph -> ( -. th -> ch ) ) |
| 8 |
2
|
ord |
|- ( ph -> ( -. th -> ta ) ) |
| 9 |
7 8
|
jcad |
|- ( ph -> ( -. th -> ( ch /\ ta ) ) ) |
| 10 |
4
|
biimpar |
|- ( ( ch /\ ta ) -> th ) |
| 11 |
9 10
|
syl6 |
|- ( ph -> ( -. th -> th ) ) |
| 12 |
11
|
pm2.18d |
|- ( ph -> th ) |
| 13 |
12 3
|
sylibr |
|- ( ph -> ps ) |