| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opncldf.1 |
|- X = U. J |
| 2 |
|
opncldf.2 |
|- F = ( u e. J |-> ( X \ u ) ) |
| 3 |
1
|
opncld |
|- ( ( J e. Top /\ u e. J ) -> ( X \ u ) e. ( Clsd ` J ) ) |
| 4 |
1
|
cldopn |
|- ( x e. ( Clsd ` J ) -> ( X \ x ) e. J ) |
| 5 |
4
|
adantl |
|- ( ( J e. Top /\ x e. ( Clsd ` J ) ) -> ( X \ x ) e. J ) |
| 6 |
1
|
cldss |
|- ( x e. ( Clsd ` J ) -> x C_ X ) |
| 7 |
6
|
ad2antll |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> x C_ X ) |
| 8 |
|
dfss4 |
|- ( x C_ X <-> ( X \ ( X \ x ) ) = x ) |
| 9 |
7 8
|
sylib |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( X \ ( X \ x ) ) = x ) |
| 10 |
9
|
eqcomd |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> x = ( X \ ( X \ x ) ) ) |
| 11 |
|
difeq2 |
|- ( u = ( X \ x ) -> ( X \ u ) = ( X \ ( X \ x ) ) ) |
| 12 |
11
|
eqeq2d |
|- ( u = ( X \ x ) -> ( x = ( X \ u ) <-> x = ( X \ ( X \ x ) ) ) ) |
| 13 |
10 12
|
syl5ibrcom |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( u = ( X \ x ) -> x = ( X \ u ) ) ) |
| 14 |
1
|
eltopss |
|- ( ( J e. Top /\ u e. J ) -> u C_ X ) |
| 15 |
14
|
adantrr |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> u C_ X ) |
| 16 |
|
dfss4 |
|- ( u C_ X <-> ( X \ ( X \ u ) ) = u ) |
| 17 |
15 16
|
sylib |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( X \ ( X \ u ) ) = u ) |
| 18 |
17
|
eqcomd |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> u = ( X \ ( X \ u ) ) ) |
| 19 |
|
difeq2 |
|- ( x = ( X \ u ) -> ( X \ x ) = ( X \ ( X \ u ) ) ) |
| 20 |
19
|
eqeq2d |
|- ( x = ( X \ u ) -> ( u = ( X \ x ) <-> u = ( X \ ( X \ u ) ) ) ) |
| 21 |
18 20
|
syl5ibrcom |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( x = ( X \ u ) -> u = ( X \ x ) ) ) |
| 22 |
13 21
|
impbid |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( u = ( X \ x ) <-> x = ( X \ u ) ) ) |
| 23 |
2 3 5 22
|
f1ocnv2d |
|- ( J e. Top -> ( F : J -1-1-onto-> ( Clsd ` J ) /\ `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) ) |