Step |
Hyp |
Ref |
Expression |
1 |
|
opncldf.1 |
|- X = U. J |
2 |
|
opncldf.2 |
|- F = ( u e. J |-> ( X \ u ) ) |
3 |
1
|
opncld |
|- ( ( J e. Top /\ u e. J ) -> ( X \ u ) e. ( Clsd ` J ) ) |
4 |
1
|
cldopn |
|- ( x e. ( Clsd ` J ) -> ( X \ x ) e. J ) |
5 |
4
|
adantl |
|- ( ( J e. Top /\ x e. ( Clsd ` J ) ) -> ( X \ x ) e. J ) |
6 |
1
|
cldss |
|- ( x e. ( Clsd ` J ) -> x C_ X ) |
7 |
6
|
ad2antll |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> x C_ X ) |
8 |
|
dfss4 |
|- ( x C_ X <-> ( X \ ( X \ x ) ) = x ) |
9 |
7 8
|
sylib |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( X \ ( X \ x ) ) = x ) |
10 |
9
|
eqcomd |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> x = ( X \ ( X \ x ) ) ) |
11 |
|
difeq2 |
|- ( u = ( X \ x ) -> ( X \ u ) = ( X \ ( X \ x ) ) ) |
12 |
11
|
eqeq2d |
|- ( u = ( X \ x ) -> ( x = ( X \ u ) <-> x = ( X \ ( X \ x ) ) ) ) |
13 |
10 12
|
syl5ibrcom |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( u = ( X \ x ) -> x = ( X \ u ) ) ) |
14 |
1
|
eltopss |
|- ( ( J e. Top /\ u e. J ) -> u C_ X ) |
15 |
14
|
adantrr |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> u C_ X ) |
16 |
|
dfss4 |
|- ( u C_ X <-> ( X \ ( X \ u ) ) = u ) |
17 |
15 16
|
sylib |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( X \ ( X \ u ) ) = u ) |
18 |
17
|
eqcomd |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> u = ( X \ ( X \ u ) ) ) |
19 |
|
difeq2 |
|- ( x = ( X \ u ) -> ( X \ x ) = ( X \ ( X \ u ) ) ) |
20 |
19
|
eqeq2d |
|- ( x = ( X \ u ) -> ( u = ( X \ x ) <-> u = ( X \ ( X \ u ) ) ) ) |
21 |
18 20
|
syl5ibrcom |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( x = ( X \ u ) -> u = ( X \ x ) ) ) |
22 |
13 21
|
impbid |
|- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( u = ( X \ x ) <-> x = ( X \ u ) ) ) |
23 |
2 3 5 22
|
f1ocnv2d |
|- ( J e. Top -> ( F : J -1-1-onto-> ( Clsd ` J ) /\ `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) ) |