Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opncldf.1 | |- X = U. J |
|
| opncldf.2 | |- F = ( u e. J |-> ( X \ u ) ) |
||
| Assertion | opncldf2 | |- ( ( J e. Top /\ A e. J ) -> ( F ` A ) = ( X \ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opncldf.1 | |- X = U. J |
|
| 2 | opncldf.2 | |- F = ( u e. J |-> ( X \ u ) ) |
|
| 3 | difeq2 | |- ( u = A -> ( X \ u ) = ( X \ A ) ) |
|
| 4 | simpr | |- ( ( J e. Top /\ A e. J ) -> A e. J ) |
|
| 5 | 1 | opncld | |- ( ( J e. Top /\ A e. J ) -> ( X \ A ) e. ( Clsd ` J ) ) |
| 6 | 2 3 4 5 | fvmptd3 | |- ( ( J e. Top /\ A e. J ) -> ( F ` A ) = ( X \ A ) ) |