Metamath Proof Explorer


Theorem opncldf2

Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses opncldf.1
|- X = U. J
opncldf.2
|- F = ( u e. J |-> ( X \ u ) )
Assertion opncldf2
|- ( ( J e. Top /\ A e. J ) -> ( F ` A ) = ( X \ A ) )

Proof

Step Hyp Ref Expression
1 opncldf.1
 |-  X = U. J
2 opncldf.2
 |-  F = ( u e. J |-> ( X \ u ) )
3 difeq2
 |-  ( u = A -> ( X \ u ) = ( X \ A ) )
4 simpr
 |-  ( ( J e. Top /\ A e. J ) -> A e. J )
5 1 opncld
 |-  ( ( J e. Top /\ A e. J ) -> ( X \ A ) e. ( Clsd ` J ) )
6 2 3 4 5 fvmptd3
 |-  ( ( J e. Top /\ A e. J ) -> ( F ` A ) = ( X \ A ) )