Step |
Hyp |
Ref |
Expression |
1 |
|
opncldf.1 |
|- X = U. J |
2 |
|
opncldf.2 |
|- F = ( u e. J |-> ( X \ u ) ) |
3 |
|
cldrcl |
|- ( B e. ( Clsd ` J ) -> J e. Top ) |
4 |
1 2
|
opncldf1 |
|- ( J e. Top -> ( F : J -1-1-onto-> ( Clsd ` J ) /\ `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) ) |
5 |
4
|
simprd |
|- ( J e. Top -> `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) |
6 |
3 5
|
syl |
|- ( B e. ( Clsd ` J ) -> `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) |
7 |
6
|
fveq1d |
|- ( B e. ( Clsd ` J ) -> ( `' F ` B ) = ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) ) |
8 |
1
|
cldopn |
|- ( B e. ( Clsd ` J ) -> ( X \ B ) e. J ) |
9 |
|
difeq2 |
|- ( x = B -> ( X \ x ) = ( X \ B ) ) |
10 |
|
eqid |
|- ( x e. ( Clsd ` J ) |-> ( X \ x ) ) = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) |
11 |
9 10
|
fvmptg |
|- ( ( B e. ( Clsd ` J ) /\ ( X \ B ) e. J ) -> ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) = ( X \ B ) ) |
12 |
8 11
|
mpdan |
|- ( B e. ( Clsd ` J ) -> ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) = ( X \ B ) ) |
13 |
7 12
|
eqtrd |
|- ( B e. ( Clsd ` J ) -> ( `' F ` B ) = ( X \ B ) ) |