| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opncldf.1 |  |-  X = U. J | 
						
							| 2 |  | opncldf.2 |  |-  F = ( u e. J |-> ( X \ u ) ) | 
						
							| 3 |  | cldrcl |  |-  ( B e. ( Clsd ` J ) -> J e. Top ) | 
						
							| 4 | 1 2 | opncldf1 |  |-  ( J e. Top -> ( F : J -1-1-onto-> ( Clsd ` J ) /\ `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) ) | 
						
							| 5 | 4 | simprd |  |-  ( J e. Top -> `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( B e. ( Clsd ` J ) -> `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) | 
						
							| 7 | 6 | fveq1d |  |-  ( B e. ( Clsd ` J ) -> ( `' F ` B ) = ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) ) | 
						
							| 8 | 1 | cldopn |  |-  ( B e. ( Clsd ` J ) -> ( X \ B ) e. J ) | 
						
							| 9 |  | difeq2 |  |-  ( x = B -> ( X \ x ) = ( X \ B ) ) | 
						
							| 10 |  | eqid |  |-  ( x e. ( Clsd ` J ) |-> ( X \ x ) ) = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) | 
						
							| 11 | 9 10 | fvmptg |  |-  ( ( B e. ( Clsd ` J ) /\ ( X \ B ) e. J ) -> ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) = ( X \ B ) ) | 
						
							| 12 | 8 11 | mpdan |  |-  ( B e. ( Clsd ` J ) -> ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) = ( X \ B ) ) | 
						
							| 13 | 7 12 | eqtrd |  |-  ( B e. ( Clsd ` J ) -> ( `' F ` B ) = ( X \ B ) ) |