| Step |
Hyp |
Ref |
Expression |
| 1 |
|
op0le.b |
|- B = ( Base ` K ) |
| 2 |
|
op0le.l |
|- .<_ = ( le ` K ) |
| 3 |
|
op0le.z |
|- .0. = ( 0. ` K ) |
| 4 |
1 2 3
|
op0le |
|- ( ( K e. OP /\ Y e. B ) -> .0. .<_ Y ) |
| 5 |
4
|
3adant2 |
|- ( ( K e. OP /\ X e. B /\ Y e. B ) -> .0. .<_ Y ) |
| 6 |
|
breq1 |
|- ( X = .0. -> ( X .<_ Y <-> .0. .<_ Y ) ) |
| 7 |
5 6
|
syl5ibrcom |
|- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( X = .0. -> X .<_ Y ) ) |
| 8 |
7
|
necon3bd |
|- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( -. X .<_ Y -> X =/= .0. ) ) |
| 9 |
8
|
imp |
|- ( ( ( K e. OP /\ X e. B /\ Y e. B ) /\ -. X .<_ Y ) -> X =/= .0. ) |