Step |
Hyp |
Ref |
Expression |
1 |
|
qtopbas |
|- ( (,) " ( QQ X. QQ ) ) e. TopBases |
2 |
|
eltg3 |
|- ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) ) ) |
3 |
1 2
|
ax-mp |
|- ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) ) |
4 |
|
uniiun |
|- U. x = U_ y e. x y |
5 |
|
ssdomg |
|- ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ ( (,) " ( QQ X. QQ ) ) ) ) |
6 |
1 5
|
ax-mp |
|- ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ ( (,) " ( QQ X. QQ ) ) ) |
7 |
|
omelon |
|- _om e. On |
8 |
|
qnnen |
|- QQ ~~ NN |
9 |
|
xpen |
|- ( ( QQ ~~ NN /\ QQ ~~ NN ) -> ( QQ X. QQ ) ~~ ( NN X. NN ) ) |
10 |
8 8 9
|
mp2an |
|- ( QQ X. QQ ) ~~ ( NN X. NN ) |
11 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
12 |
10 11
|
entri |
|- ( QQ X. QQ ) ~~ NN |
13 |
|
nnenom |
|- NN ~~ _om |
14 |
12 13
|
entr2i |
|- _om ~~ ( QQ X. QQ ) |
15 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ ( QQ X. QQ ) ) -> ( QQ X. QQ ) e. dom card ) |
16 |
7 14 15
|
mp2an |
|- ( QQ X. QQ ) e. dom card |
17 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
18 |
|
ffun |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
19 |
17 18
|
ax-mp |
|- Fun (,) |
20 |
|
qssre |
|- QQ C_ RR |
21 |
|
ressxr |
|- RR C_ RR* |
22 |
20 21
|
sstri |
|- QQ C_ RR* |
23 |
|
xpss12 |
|- ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) |
24 |
22 22 23
|
mp2an |
|- ( QQ X. QQ ) C_ ( RR* X. RR* ) |
25 |
17
|
fdmi |
|- dom (,) = ( RR* X. RR* ) |
26 |
24 25
|
sseqtrri |
|- ( QQ X. QQ ) C_ dom (,) |
27 |
|
fores |
|- ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) ) |
28 |
19 26 27
|
mp2an |
|- ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) |
29 |
|
fodomnum |
|- ( ( QQ X. QQ ) e. dom card -> ( ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) ) ) |
30 |
16 28 29
|
mp2 |
|- ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) |
31 |
|
domentr |
|- ( ( ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) /\ ( QQ X. QQ ) ~~ NN ) -> ( (,) " ( QQ X. QQ ) ) ~<_ NN ) |
32 |
30 12 31
|
mp2an |
|- ( (,) " ( QQ X. QQ ) ) ~<_ NN |
33 |
|
domtr |
|- ( ( x ~<_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) ~<_ NN ) -> x ~<_ NN ) |
34 |
6 32 33
|
sylancl |
|- ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ NN ) |
35 |
|
imassrn |
|- ( (,) " ( QQ X. QQ ) ) C_ ran (,) |
36 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
37 |
17 36
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
38 |
|
ioombl |
|- ( x (,) y ) e. dom vol |
39 |
38
|
rgen2w |
|- A. x e. RR* A. y e. RR* ( x (,) y ) e. dom vol |
40 |
|
ffnov |
|- ( (,) : ( RR* X. RR* ) --> dom vol <-> ( (,) Fn ( RR* X. RR* ) /\ A. x e. RR* A. y e. RR* ( x (,) y ) e. dom vol ) ) |
41 |
37 39 40
|
mpbir2an |
|- (,) : ( RR* X. RR* ) --> dom vol |
42 |
|
frn |
|- ( (,) : ( RR* X. RR* ) --> dom vol -> ran (,) C_ dom vol ) |
43 |
41 42
|
ax-mp |
|- ran (,) C_ dom vol |
44 |
35 43
|
sstri |
|- ( (,) " ( QQ X. QQ ) ) C_ dom vol |
45 |
|
sstr |
|- ( ( x C_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) C_ dom vol ) -> x C_ dom vol ) |
46 |
44 45
|
mpan2 |
|- ( x C_ ( (,) " ( QQ X. QQ ) ) -> x C_ dom vol ) |
47 |
|
dfss3 |
|- ( x C_ dom vol <-> A. y e. x y e. dom vol ) |
48 |
46 47
|
sylib |
|- ( x C_ ( (,) " ( QQ X. QQ ) ) -> A. y e. x y e. dom vol ) |
49 |
|
iunmbl2 |
|- ( ( x ~<_ NN /\ A. y e. x y e. dom vol ) -> U_ y e. x y e. dom vol ) |
50 |
34 48 49
|
syl2anc |
|- ( x C_ ( (,) " ( QQ X. QQ ) ) -> U_ y e. x y e. dom vol ) |
51 |
4 50
|
eqeltrid |
|- ( x C_ ( (,) " ( QQ X. QQ ) ) -> U. x e. dom vol ) |
52 |
|
eleq1 |
|- ( A = U. x -> ( A e. dom vol <-> U. x e. dom vol ) ) |
53 |
51 52
|
syl5ibrcom |
|- ( x C_ ( (,) " ( QQ X. QQ ) ) -> ( A = U. x -> A e. dom vol ) ) |
54 |
53
|
imp |
|- ( ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) -> A e. dom vol ) |
55 |
54
|
exlimiv |
|- ( E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) -> A e. dom vol ) |
56 |
3 55
|
sylbi |
|- ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) -> A e. dom vol ) |
57 |
|
eqid |
|- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
58 |
57
|
tgqioo |
|- ( topGen ` ran (,) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
59 |
56 58
|
eleq2s |
|- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |