| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtopbas |  |-  ( (,) " ( QQ X. QQ ) ) e. TopBases | 
						
							| 2 |  | eltg3 |  |-  ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) ) | 
						
							| 4 |  | uniiun |  |-  U. x = U_ y e. x y | 
						
							| 5 |  | ssdomg |  |-  ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ ( (,) " ( QQ X. QQ ) ) ) ) | 
						
							| 6 | 1 5 | ax-mp |  |-  ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 7 |  | omelon |  |-  _om e. On | 
						
							| 8 |  | qnnen |  |-  QQ ~~ NN | 
						
							| 9 |  | xpen |  |-  ( ( QQ ~~ NN /\ QQ ~~ NN ) -> ( QQ X. QQ ) ~~ ( NN X. NN ) ) | 
						
							| 10 | 8 8 9 | mp2an |  |-  ( QQ X. QQ ) ~~ ( NN X. NN ) | 
						
							| 11 |  | xpnnen |  |-  ( NN X. NN ) ~~ NN | 
						
							| 12 | 10 11 | entri |  |-  ( QQ X. QQ ) ~~ NN | 
						
							| 13 |  | nnenom |  |-  NN ~~ _om | 
						
							| 14 | 12 13 | entr2i |  |-  _om ~~ ( QQ X. QQ ) | 
						
							| 15 |  | isnumi |  |-  ( ( _om e. On /\ _om ~~ ( QQ X. QQ ) ) -> ( QQ X. QQ ) e. dom card ) | 
						
							| 16 | 7 14 15 | mp2an |  |-  ( QQ X. QQ ) e. dom card | 
						
							| 17 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 18 |  | ffun |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  Fun (,) | 
						
							| 20 |  | qssre |  |-  QQ C_ RR | 
						
							| 21 |  | ressxr |  |-  RR C_ RR* | 
						
							| 22 | 20 21 | sstri |  |-  QQ C_ RR* | 
						
							| 23 |  | xpss12 |  |-  ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) | 
						
							| 24 | 22 22 23 | mp2an |  |-  ( QQ X. QQ ) C_ ( RR* X. RR* ) | 
						
							| 25 | 17 | fdmi |  |-  dom (,) = ( RR* X. RR* ) | 
						
							| 26 | 24 25 | sseqtrri |  |-  ( QQ X. QQ ) C_ dom (,) | 
						
							| 27 |  | fores |  |-  ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 28 | 19 26 27 | mp2an |  |-  ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) | 
						
							| 29 |  | fodomnum |  |-  ( ( QQ X. QQ ) e. dom card -> ( ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) ) ) | 
						
							| 30 | 16 28 29 | mp2 |  |-  ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) | 
						
							| 31 |  | domentr |  |-  ( ( ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) /\ ( QQ X. QQ ) ~~ NN ) -> ( (,) " ( QQ X. QQ ) ) ~<_ NN ) | 
						
							| 32 | 30 12 31 | mp2an |  |-  ( (,) " ( QQ X. QQ ) ) ~<_ NN | 
						
							| 33 |  | domtr |  |-  ( ( x ~<_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) ~<_ NN ) -> x ~<_ NN ) | 
						
							| 34 | 6 32 33 | sylancl |  |-  ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ NN ) | 
						
							| 35 |  | imassrn |  |-  ( (,) " ( QQ X. QQ ) ) C_ ran (,) | 
						
							| 36 |  | ffn |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) | 
						
							| 37 | 17 36 | ax-mp |  |-  (,) Fn ( RR* X. RR* ) | 
						
							| 38 |  | ioombl |  |-  ( x (,) y ) e. dom vol | 
						
							| 39 | 38 | rgen2w |  |-  A. x e. RR* A. y e. RR* ( x (,) y ) e. dom vol | 
						
							| 40 |  | ffnov |  |-  ( (,) : ( RR* X. RR* ) --> dom vol <-> ( (,) Fn ( RR* X. RR* ) /\ A. x e. RR* A. y e. RR* ( x (,) y ) e. dom vol ) ) | 
						
							| 41 | 37 39 40 | mpbir2an |  |-  (,) : ( RR* X. RR* ) --> dom vol | 
						
							| 42 |  | frn |  |-  ( (,) : ( RR* X. RR* ) --> dom vol -> ran (,) C_ dom vol ) | 
						
							| 43 | 41 42 | ax-mp |  |-  ran (,) C_ dom vol | 
						
							| 44 | 35 43 | sstri |  |-  ( (,) " ( QQ X. QQ ) ) C_ dom vol | 
						
							| 45 |  | sstr |  |-  ( ( x C_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) C_ dom vol ) -> x C_ dom vol ) | 
						
							| 46 | 44 45 | mpan2 |  |-  ( x C_ ( (,) " ( QQ X. QQ ) ) -> x C_ dom vol ) | 
						
							| 47 |  | dfss3 |  |-  ( x C_ dom vol <-> A. y e. x y e. dom vol ) | 
						
							| 48 | 46 47 | sylib |  |-  ( x C_ ( (,) " ( QQ X. QQ ) ) -> A. y e. x y e. dom vol ) | 
						
							| 49 |  | iunmbl2 |  |-  ( ( x ~<_ NN /\ A. y e. x y e. dom vol ) -> U_ y e. x y e. dom vol ) | 
						
							| 50 | 34 48 49 | syl2anc |  |-  ( x C_ ( (,) " ( QQ X. QQ ) ) -> U_ y e. x y e. dom vol ) | 
						
							| 51 | 4 50 | eqeltrid |  |-  ( x C_ ( (,) " ( QQ X. QQ ) ) -> U. x e. dom vol ) | 
						
							| 52 |  | eleq1 |  |-  ( A = U. x -> ( A e. dom vol <-> U. x e. dom vol ) ) | 
						
							| 53 | 51 52 | syl5ibrcom |  |-  ( x C_ ( (,) " ( QQ X. QQ ) ) -> ( A = U. x -> A e. dom vol ) ) | 
						
							| 54 | 53 | imp |  |-  ( ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) -> A e. dom vol ) | 
						
							| 55 | 54 | exlimiv |  |-  ( E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) -> A e. dom vol ) | 
						
							| 56 | 3 55 | sylbi |  |-  ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) -> A e. dom vol ) | 
						
							| 57 |  | eqid |  |-  ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 58 | 57 | tgqioo |  |-  ( topGen ` ran (,) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 59 | 56 58 | eleq2s |  |-  ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |