| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 |  | fveq2 |  |-  ( z = w -> ( [,] ` z ) = ( [,] ` w ) ) | 
						
							| 3 | 2 | sseq1d |  |-  ( z = w -> ( ( [,] ` z ) C_ A <-> ( [,] ` w ) C_ A ) ) | 
						
							| 4 | 3 | elrab |  |-  ( w e. { z e. ran F | ( [,] ` z ) C_ A } <-> ( w e. ran F /\ ( [,] ` w ) C_ A ) ) | 
						
							| 5 |  | simprr |  |-  ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) C_ A ) | 
						
							| 6 |  | fvex |  |-  ( [,] ` w ) e. _V | 
						
							| 7 | 6 | elpw |  |-  ( ( [,] ` w ) e. ~P A <-> ( [,] ` w ) C_ A ) | 
						
							| 8 | 5 7 | sylibr |  |-  ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) e. ~P A ) | 
						
							| 9 | 4 8 | sylan2b |  |-  ( ( A e. ( topGen ` ran (,) ) /\ w e. { z e. ran F | ( [,] ` z ) C_ A } ) -> ( [,] ` w ) e. ~P A ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( A e. ( topGen ` ran (,) ) -> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) | 
						
							| 11 |  | iccf |  |-  [,] : ( RR* X. RR* ) --> ~P RR* | 
						
							| 12 |  | ffun |  |-  ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) | 
						
							| 13 | 11 12 | ax-mp |  |-  Fun [,] | 
						
							| 14 |  | ssrab2 |  |-  { z e. ran F | ( [,] ` z ) C_ A } C_ ran F | 
						
							| 15 | 1 | dyadf |  |-  F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) | 
						
							| 16 |  | frn |  |-  ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ran F C_ ( <_ i^i ( RR X. RR ) ) | 
						
							| 18 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 19 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 20 | 18 19 | sstri |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) | 
						
							| 21 | 17 20 | sstri |  |-  ran F C_ ( RR* X. RR* ) | 
						
							| 22 | 14 21 | sstri |  |-  { z e. ran F | ( [,] ` z ) C_ A } C_ ( RR* X. RR* ) | 
						
							| 23 | 11 | fdmi |  |-  dom [,] = ( RR* X. RR* ) | 
						
							| 24 | 22 23 | sseqtrri |  |-  { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] | 
						
							| 25 |  | funimass4 |  |-  ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) ) | 
						
							| 26 | 13 24 25 | mp2an |  |-  ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) | 
						
							| 27 | 10 26 | sylibr |  |-  ( A e. ( topGen ` ran (,) ) -> ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A ) | 
						
							| 28 |  | sspwuni |  |-  ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) | 
						
							| 29 | 27 28 | sylib |  |-  ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) | 
						
							| 30 |  | eqid |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 31 | 30 | rexmet |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) | 
						
							| 32 |  | eqid |  |-  ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 33 | 30 32 | tgioo |  |-  ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 34 | 33 | mopni2 |  |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) | 
						
							| 35 | 31 34 | mp3an1 |  |-  ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) | 
						
							| 36 |  | elssuni |  |-  ( A e. ( topGen ` ran (,) ) -> A C_ U. ( topGen ` ran (,) ) ) | 
						
							| 37 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 38 | 36 37 | sseqtrrdi |  |-  ( A e. ( topGen ` ran (,) ) -> A C_ RR ) | 
						
							| 39 | 38 | sselda |  |-  ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. RR ) | 
						
							| 40 |  | rpre |  |-  ( r e. RR+ -> r e. RR ) | 
						
							| 41 | 30 | bl2ioo |  |-  ( ( w e. RR /\ r e. RR ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) | 
						
							| 42 | 39 40 41 | syl2an |  |-  ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) | 
						
							| 43 | 42 | sseq1d |  |-  ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A <-> ( ( w - r ) (,) ( w + r ) ) C_ A ) ) | 
						
							| 44 |  | 2re |  |-  2 e. RR | 
						
							| 45 |  | 1lt2 |  |-  1 < 2 | 
						
							| 46 |  | expnlbnd |  |-  ( ( r e. RR+ /\ 2 e. RR /\ 1 < 2 ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) | 
						
							| 47 | 44 45 46 | mp3an23 |  |-  ( r e. RR+ -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) | 
						
							| 48 | 47 | ad2antrl |  |-  ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) | 
						
							| 49 | 39 | ad2antrr |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. RR ) | 
						
							| 50 |  | 2nn |  |-  2 e. NN | 
						
							| 51 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 52 | 51 | ad2antrl |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> n e. NN0 ) | 
						
							| 53 |  | nnexpcl |  |-  ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) | 
						
							| 54 | 50 52 53 | sylancr |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. NN ) | 
						
							| 55 | 54 | nnred |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. RR ) | 
						
							| 56 | 49 55 | remulcld |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) e. RR ) | 
						
							| 57 |  | fllelt |  |-  ( ( w x. ( 2 ^ n ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) | 
						
							| 59 | 58 | simpld |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) | 
						
							| 60 |  | reflcl |  |-  ( ( w x. ( 2 ^ n ) ) e. RR -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) | 
						
							| 61 | 56 60 | syl |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) | 
						
							| 62 | 54 | nngt0d |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 0 < ( 2 ^ n ) ) | 
						
							| 63 |  | ledivmul2 |  |-  ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR /\ w e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) | 
						
							| 64 | 61 49 55 62 63 | syl112anc |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) | 
						
							| 65 | 59 64 | mpbird |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w ) | 
						
							| 66 |  | peano2re |  |-  ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) | 
						
							| 67 | 61 66 | syl |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) | 
						
							| 68 | 67 54 | nndivred |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) | 
						
							| 69 | 58 | simprd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) | 
						
							| 70 |  | ltmuldiv |  |-  ( ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) | 
						
							| 71 | 49 67 55 62 70 | syl112anc |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) | 
						
							| 72 | 69 71 | mpbid |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) | 
						
							| 73 | 49 68 72 | ltled |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) | 
						
							| 74 | 61 54 | nndivred |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR ) | 
						
							| 75 |  | elicc2 |  |-  ( ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) | 
						
							| 76 | 74 68 75 | syl2anc |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) | 
						
							| 77 | 49 65 73 76 | mpbir3and |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) | 
						
							| 78 | 56 | flcld |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ ) | 
						
							| 79 | 1 | dyadval |  |-  ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) | 
						
							| 80 | 78 52 79 | syl2anc |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) ) | 
						
							| 82 |  | df-ov |  |-  ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) | 
						
							| 83 | 81 82 | eqtr4di |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) | 
						
							| 84 | 77 83 | eleqtrrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) | 
						
							| 85 |  | fveq2 |  |-  ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( [,] ` z ) = ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) | 
						
							| 86 | 85 | sseq1d |  |-  ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( ( [,] ` z ) C_ A <-> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) ) | 
						
							| 87 |  | ffn |  |-  ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) | 
						
							| 88 | 15 87 | ax-mp |  |-  F Fn ( ZZ X. NN0 ) | 
						
							| 89 |  | fnovrn |  |-  ( ( F Fn ( ZZ X. NN0 ) /\ ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) | 
						
							| 90 | 88 78 52 89 | mp3an2i |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) | 
						
							| 91 |  | simplrl |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR+ ) | 
						
							| 92 | 91 | rpred |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR ) | 
						
							| 93 | 49 92 | resubcld |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR ) | 
						
							| 94 | 93 | rexrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR* ) | 
						
							| 95 | 49 92 | readdcld |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR ) | 
						
							| 96 | 95 | rexrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR* ) | 
						
							| 97 | 74 92 | readdcld |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) e. RR ) | 
						
							| 98 | 61 | recnd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. CC ) | 
						
							| 99 |  | 1cnd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 1 e. CC ) | 
						
							| 100 | 55 | recnd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. CC ) | 
						
							| 101 | 54 | nnne0d |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) =/= 0 ) | 
						
							| 102 | 98 99 100 101 | divdird |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) ) | 
						
							| 103 | 54 | nnrecred |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) e. RR ) | 
						
							| 104 |  | simprr |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) < r ) | 
						
							| 105 | 103 92 74 104 | ltadd2dd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) | 
						
							| 106 | 102 105 | eqbrtrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) | 
						
							| 107 | 49 68 97 72 106 | lttrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) | 
						
							| 108 | 49 92 74 | ltsubaddd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) ) | 
						
							| 109 | 107 108 | mpbird |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) | 
						
							| 110 | 49 103 | readdcld |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) e. RR ) | 
						
							| 111 | 74 49 103 65 | leadd1dd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) | 
						
							| 112 | 102 111 | eqbrtrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) | 
						
							| 113 | 103 92 49 104 | ltadd2dd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) < ( w + r ) ) | 
						
							| 114 | 68 110 95 112 113 | lelttrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) | 
						
							| 115 |  | iccssioo |  |-  ( ( ( ( w - r ) e. RR* /\ ( w + r ) e. RR* ) /\ ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) | 
						
							| 116 | 94 96 109 114 115 | syl22anc |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) | 
						
							| 117 | 83 116 | eqsstrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) | 
						
							| 118 |  | simplrr |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) (,) ( w + r ) ) C_ A ) | 
						
							| 119 | 117 118 | sstrd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) | 
						
							| 120 | 86 90 119 | elrabd |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } ) | 
						
							| 121 |  | funfvima2 |  |-  ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) | 
						
							| 122 | 13 24 121 | mp2an |  |-  ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) | 
						
							| 123 | 120 122 | syl |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) | 
						
							| 124 |  | elunii |  |-  ( ( w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) /\ ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) | 
						
							| 125 | 84 123 124 | syl2anc |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) | 
						
							| 126 | 48 125 | rexlimddv |  |-  ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) | 
						
							| 127 | 126 | expr |  |-  ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( ( w - r ) (,) ( w + r ) ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) | 
						
							| 128 | 43 127 | sylbid |  |-  ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) | 
						
							| 129 | 128 | rexlimdva |  |-  ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> ( E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) | 
						
							| 130 | 35 129 | mpd |  |-  ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) | 
						
							| 131 | 29 130 | eqelssd |  |-  ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) = A ) | 
						
							| 132 |  | fveq2 |  |-  ( c = a -> ( [,] ` c ) = ( [,] ` a ) ) | 
						
							| 133 | 132 | sseq1d |  |-  ( c = a -> ( ( [,] ` c ) C_ ( [,] ` b ) <-> ( [,] ` a ) C_ ( [,] ` b ) ) ) | 
						
							| 134 |  | equequ1 |  |-  ( c = a -> ( c = b <-> a = b ) ) | 
						
							| 135 | 133 134 | imbi12d |  |-  ( c = a -> ( ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) | 
						
							| 136 | 135 | ralbidv |  |-  ( c = a -> ( A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) | 
						
							| 137 | 136 | cbvrabv |  |-  { c e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) } = { a e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) } | 
						
							| 138 | 14 | a1i |  |-  ( A e. ( topGen ` ran (,) ) -> { z e. ran F | ( [,] ` z ) C_ A } C_ ran F ) | 
						
							| 139 | 1 137 138 | dyadmbl |  |-  ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) e. dom vol ) | 
						
							| 140 | 131 139 | eqeltrrd |  |-  ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |