Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
2 |
|
fveq2 |
|- ( z = w -> ( [,] ` z ) = ( [,] ` w ) ) |
3 |
2
|
sseq1d |
|- ( z = w -> ( ( [,] ` z ) C_ A <-> ( [,] ` w ) C_ A ) ) |
4 |
3
|
elrab |
|- ( w e. { z e. ran F | ( [,] ` z ) C_ A } <-> ( w e. ran F /\ ( [,] ` w ) C_ A ) ) |
5 |
|
simprr |
|- ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) C_ A ) |
6 |
|
fvex |
|- ( [,] ` w ) e. _V |
7 |
6
|
elpw |
|- ( ( [,] ` w ) e. ~P A <-> ( [,] ` w ) C_ A ) |
8 |
5 7
|
sylibr |
|- ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) e. ~P A ) |
9 |
4 8
|
sylan2b |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. { z e. ran F | ( [,] ` z ) C_ A } ) -> ( [,] ` w ) e. ~P A ) |
10 |
9
|
ralrimiva |
|- ( A e. ( topGen ` ran (,) ) -> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) |
11 |
|
iccf |
|- [,] : ( RR* X. RR* ) --> ~P RR* |
12 |
|
ffun |
|- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
13 |
11 12
|
ax-mp |
|- Fun [,] |
14 |
|
ssrab2 |
|- { z e. ran F | ( [,] ` z ) C_ A } C_ ran F |
15 |
1
|
dyadf |
|- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
16 |
|
frn |
|- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
17 |
15 16
|
ax-mp |
|- ran F C_ ( <_ i^i ( RR X. RR ) ) |
18 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
19 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
20 |
18 19
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
21 |
17 20
|
sstri |
|- ran F C_ ( RR* X. RR* ) |
22 |
14 21
|
sstri |
|- { z e. ran F | ( [,] ` z ) C_ A } C_ ( RR* X. RR* ) |
23 |
11
|
fdmi |
|- dom [,] = ( RR* X. RR* ) |
24 |
22 23
|
sseqtrri |
|- { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] |
25 |
|
funimass4 |
|- ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) ) |
26 |
13 24 25
|
mp2an |
|- ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) |
27 |
10 26
|
sylibr |
|- ( A e. ( topGen ` ran (,) ) -> ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A ) |
28 |
|
sspwuni |
|- ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) |
29 |
27 28
|
sylib |
|- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) |
30 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
31 |
30
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
32 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
33 |
30 32
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
34 |
33
|
mopni2 |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) |
35 |
31 34
|
mp3an1 |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) |
36 |
|
elssuni |
|- ( A e. ( topGen ` ran (,) ) -> A C_ U. ( topGen ` ran (,) ) ) |
37 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
38 |
36 37
|
sseqtrrdi |
|- ( A e. ( topGen ` ran (,) ) -> A C_ RR ) |
39 |
38
|
sselda |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. RR ) |
40 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
41 |
30
|
bl2ioo |
|- ( ( w e. RR /\ r e. RR ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) |
42 |
39 40 41
|
syl2an |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) |
43 |
42
|
sseq1d |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A <-> ( ( w - r ) (,) ( w + r ) ) C_ A ) ) |
44 |
|
2re |
|- 2 e. RR |
45 |
|
1lt2 |
|- 1 < 2 |
46 |
|
expnlbnd |
|- ( ( r e. RR+ /\ 2 e. RR /\ 1 < 2 ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
47 |
44 45 46
|
mp3an23 |
|- ( r e. RR+ -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
48 |
47
|
ad2antrl |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
49 |
39
|
ad2antrr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. RR ) |
50 |
|
2nn |
|- 2 e. NN |
51 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
52 |
51
|
ad2antrl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> n e. NN0 ) |
53 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
54 |
50 52 53
|
sylancr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. NN ) |
55 |
54
|
nnred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. RR ) |
56 |
49 55
|
remulcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) e. RR ) |
57 |
|
fllelt |
|- ( ( w x. ( 2 ^ n ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) |
58 |
56 57
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) |
59 |
58
|
simpld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) |
60 |
|
reflcl |
|- ( ( w x. ( 2 ^ n ) ) e. RR -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) |
61 |
56 60
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) |
62 |
54
|
nngt0d |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 0 < ( 2 ^ n ) ) |
63 |
|
ledivmul2 |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR /\ w e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) |
64 |
61 49 55 62 63
|
syl112anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) |
65 |
59 64
|
mpbird |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w ) |
66 |
|
peano2re |
|- ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) |
67 |
61 66
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) |
68 |
67 54
|
nndivred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) |
69 |
58
|
simprd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) |
70 |
|
ltmuldiv |
|- ( ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
71 |
49 67 55 62 70
|
syl112anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
72 |
69 71
|
mpbid |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) |
73 |
49 68 72
|
ltled |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) |
74 |
61 54
|
nndivred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR ) |
75 |
|
elicc2 |
|- ( ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) |
76 |
74 68 75
|
syl2anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) |
77 |
49 65 73 76
|
mpbir3and |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
78 |
56
|
flcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ ) |
79 |
1
|
dyadval |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
80 |
78 52 79
|
syl2anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
81 |
80
|
fveq2d |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) ) |
82 |
|
df-ov |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
83 |
81 82
|
eqtr4di |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
84 |
77 83
|
eleqtrrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) |
85 |
|
fveq2 |
|- ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( [,] ` z ) = ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) |
86 |
85
|
sseq1d |
|- ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( ( [,] ` z ) C_ A <-> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) ) |
87 |
|
ffn |
|- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) |
88 |
15 87
|
ax-mp |
|- F Fn ( ZZ X. NN0 ) |
89 |
|
fnovrn |
|- ( ( F Fn ( ZZ X. NN0 ) /\ ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) |
90 |
88 78 52 89
|
mp3an2i |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) |
91 |
|
simplrl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR+ ) |
92 |
91
|
rpred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR ) |
93 |
49 92
|
resubcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR ) |
94 |
93
|
rexrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR* ) |
95 |
49 92
|
readdcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR ) |
96 |
95
|
rexrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR* ) |
97 |
74 92
|
readdcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) e. RR ) |
98 |
61
|
recnd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. CC ) |
99 |
|
1cnd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 1 e. CC ) |
100 |
55
|
recnd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. CC ) |
101 |
54
|
nnne0d |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) =/= 0 ) |
102 |
98 99 100 101
|
divdird |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) ) |
103 |
54
|
nnrecred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) e. RR ) |
104 |
|
simprr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) < r ) |
105 |
103 92 74 104
|
ltadd2dd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
106 |
102 105
|
eqbrtrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
107 |
49 68 97 72 106
|
lttrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
108 |
49 92 74
|
ltsubaddd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) ) |
109 |
107 108
|
mpbird |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
110 |
49 103
|
readdcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) e. RR ) |
111 |
74 49 103 65
|
leadd1dd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) |
112 |
102 111
|
eqbrtrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) |
113 |
103 92 49 104
|
ltadd2dd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) < ( w + r ) ) |
114 |
68 110 95 112 113
|
lelttrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) |
115 |
|
iccssioo |
|- ( ( ( ( w - r ) e. RR* /\ ( w + r ) e. RR* ) /\ ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
116 |
94 96 109 114 115
|
syl22anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
117 |
83 116
|
eqsstrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
118 |
|
simplrr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) (,) ( w + r ) ) C_ A ) |
119 |
117 118
|
sstrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) |
120 |
86 90 119
|
elrabd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } ) |
121 |
|
funfvima2 |
|- ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
122 |
13 24 121
|
mp2an |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
123 |
120 122
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
124 |
|
elunii |
|- ( ( w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) /\ ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
125 |
84 123 124
|
syl2anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
126 |
48 125
|
rexlimddv |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
127 |
126
|
expr |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( ( w - r ) (,) ( w + r ) ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
128 |
43 127
|
sylbid |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
129 |
128
|
rexlimdva |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> ( E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
130 |
35 129
|
mpd |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
131 |
29 130
|
eqelssd |
|- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) = A ) |
132 |
|
fveq2 |
|- ( c = a -> ( [,] ` c ) = ( [,] ` a ) ) |
133 |
132
|
sseq1d |
|- ( c = a -> ( ( [,] ` c ) C_ ( [,] ` b ) <-> ( [,] ` a ) C_ ( [,] ` b ) ) ) |
134 |
|
equequ1 |
|- ( c = a -> ( c = b <-> a = b ) ) |
135 |
133 134
|
imbi12d |
|- ( c = a -> ( ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) |
136 |
135
|
ralbidv |
|- ( c = a -> ( A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) |
137 |
136
|
cbvrabv |
|- { c e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) } = { a e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) } |
138 |
14
|
a1i |
|- ( A e. ( topGen ` ran (,) ) -> { z e. ran F | ( [,] ` z ) C_ A } C_ ran F ) |
139 |
1 137 138
|
dyadmbl |
|- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) e. dom vol ) |
140 |
131 139
|
eqeltrrd |
|- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |