Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnneip | |- ( ( J e. Top /\ N e. J /\ P e. N ) -> N e. ( ( nei ` J ) ` { P } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( P e. N -> { P } C_ N ) |
|
| 2 | opnneiss | |- ( ( J e. Top /\ N e. J /\ { P } C_ N ) -> N e. ( ( nei ` J ) ` { P } ) ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( J e. Top /\ N e. J /\ P e. N ) -> N e. ( ( nei ` J ) ` { P } ) ) |