| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							opnoncon.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							opnoncon.o | 
							 |-  ._|_ = ( oc ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							opnoncon.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							opnoncon.z | 
							 |-  .0. = ( 0. ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( join ` K ) = ( join ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 8 | 
							
								1 5 2 6 3 4 7
							 | 
							oposlem | 
							 |-  ( ( K e. OP /\ X e. B /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X ( join ` K ) ( ._|_ ` X ) ) = ( 1. ` K ) /\ ( X ./\ ( ._|_ ` X ) ) = .0. ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3anidm23 | 
							 |-  ( ( K e. OP /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X ( join ` K ) ( ._|_ ` X ) ) = ( 1. ` K ) /\ ( X ./\ ( ._|_ ` X ) ) = .0. ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							simp3d | 
							 |-  ( ( K e. OP /\ X e. B ) -> ( X ./\ ( ._|_ ` X ) ) = .0. )  |