| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex |  |-  RR e. _V | 
						
							| 2 |  | elssuni |  |-  ( A e. ( topGen ` ran (,) ) -> A C_ U. ( topGen ` ran (,) ) ) | 
						
							| 3 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 4 | 2 3 | sseqtrrdi |  |-  ( A e. ( topGen ` ran (,) ) -> A C_ RR ) | 
						
							| 5 |  | ssdomg |  |-  ( RR e. _V -> ( A C_ RR -> A ~<_ RR ) ) | 
						
							| 6 | 1 4 5 | mpsyl |  |-  ( A e. ( topGen ` ran (,) ) -> A ~<_ RR ) | 
						
							| 7 |  | rpnnen |  |-  RR ~~ ~P NN | 
						
							| 8 |  | domentr |  |-  ( ( A ~<_ RR /\ RR ~~ ~P NN ) -> A ~<_ ~P NN ) | 
						
							| 9 | 6 7 8 | sylancl |  |-  ( A e. ( topGen ` ran (,) ) -> A ~<_ ~P NN ) | 
						
							| 10 |  | n0 |  |-  ( A =/= (/) <-> E. x x e. A ) | 
						
							| 11 | 4 | sselda |  |-  ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> x e. RR ) | 
						
							| 12 |  | rpnnen2 |  |-  ~P NN ~<_ ( 0 [,] 1 ) | 
						
							| 13 |  | rphalfcl |  |-  ( y e. RR+ -> ( y / 2 ) e. RR+ ) | 
						
							| 14 | 13 | rpred |  |-  ( y e. RR+ -> ( y / 2 ) e. RR ) | 
						
							| 15 |  | resubcl |  |-  ( ( x e. RR /\ ( y / 2 ) e. RR ) -> ( x - ( y / 2 ) ) e. RR ) | 
						
							| 16 | 14 15 | sylan2 |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x - ( y / 2 ) ) e. RR ) | 
						
							| 17 |  | readdcl |  |-  ( ( x e. RR /\ ( y / 2 ) e. RR ) -> ( x + ( y / 2 ) ) e. RR ) | 
						
							| 18 | 14 17 | sylan2 |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x + ( y / 2 ) ) e. RR ) | 
						
							| 19 |  | simpl |  |-  ( ( x e. RR /\ y e. RR+ ) -> x e. RR ) | 
						
							| 20 |  | ltsubrp |  |-  ( ( x e. RR /\ ( y / 2 ) e. RR+ ) -> ( x - ( y / 2 ) ) < x ) | 
						
							| 21 | 13 20 | sylan2 |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x - ( y / 2 ) ) < x ) | 
						
							| 22 |  | ltaddrp |  |-  ( ( x e. RR /\ ( y / 2 ) e. RR+ ) -> x < ( x + ( y / 2 ) ) ) | 
						
							| 23 | 13 22 | sylan2 |  |-  ( ( x e. RR /\ y e. RR+ ) -> x < ( x + ( y / 2 ) ) ) | 
						
							| 24 | 16 19 18 21 23 | lttrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x - ( y / 2 ) ) < ( x + ( y / 2 ) ) ) | 
						
							| 25 |  | iccen |  |-  ( ( ( x - ( y / 2 ) ) e. RR /\ ( x + ( y / 2 ) ) e. RR /\ ( x - ( y / 2 ) ) < ( x + ( y / 2 ) ) ) -> ( 0 [,] 1 ) ~~ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) | 
						
							| 26 | 16 18 24 25 | syl3anc |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( 0 [,] 1 ) ~~ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) | 
						
							| 27 |  | domentr |  |-  ( ( ~P NN ~<_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) ~~ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) -> ~P NN ~<_ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) | 
						
							| 28 | 12 26 27 | sylancr |  |-  ( ( x e. RR /\ y e. RR+ ) -> ~P NN ~<_ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ) | 
						
							| 29 |  | ovex |  |-  ( ( x - y ) (,) ( x + y ) ) e. _V | 
						
							| 30 |  | rpre |  |-  ( y e. RR+ -> y e. RR ) | 
						
							| 31 |  | resubcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x - y ) e. RR ) | 
						
							| 32 | 30 31 | sylan2 |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x - y ) e. RR ) | 
						
							| 33 | 32 | rexrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x - y ) e. RR* ) | 
						
							| 34 |  | readdcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) | 
						
							| 35 | 30 34 | sylan2 |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x + y ) e. RR ) | 
						
							| 36 | 35 | rexrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x + y ) e. RR* ) | 
						
							| 37 | 19 | recnd |  |-  ( ( x e. RR /\ y e. RR+ ) -> x e. CC ) | 
						
							| 38 | 14 | adantl |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( y / 2 ) e. RR ) | 
						
							| 39 | 38 | recnd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( y / 2 ) e. CC ) | 
						
							| 40 | 37 39 39 | subsub4d |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) - ( y / 2 ) ) = ( x - ( ( y / 2 ) + ( y / 2 ) ) ) ) | 
						
							| 41 | 30 | adantl |  |-  ( ( x e. RR /\ y e. RR+ ) -> y e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ( x e. RR /\ y e. RR+ ) -> y e. CC ) | 
						
							| 43 | 42 | 2halvesd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( y / 2 ) + ( y / 2 ) ) = y ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x - ( ( y / 2 ) + ( y / 2 ) ) ) = ( x - y ) ) | 
						
							| 45 | 40 44 | eqtrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) - ( y / 2 ) ) = ( x - y ) ) | 
						
							| 46 | 13 | adantl |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( y / 2 ) e. RR+ ) | 
						
							| 47 | 16 46 | ltsubrpd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) - ( y / 2 ) ) < ( x - ( y / 2 ) ) ) | 
						
							| 48 | 45 47 | eqbrtrrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x - y ) < ( x - ( y / 2 ) ) ) | 
						
							| 49 | 18 46 | ltaddrpd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x + ( y / 2 ) ) < ( ( x + ( y / 2 ) ) + ( y / 2 ) ) ) | 
						
							| 50 | 37 39 39 | addassd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( x + ( y / 2 ) ) + ( y / 2 ) ) = ( x + ( ( y / 2 ) + ( y / 2 ) ) ) ) | 
						
							| 51 | 43 | oveq2d |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x + ( ( y / 2 ) + ( y / 2 ) ) ) = ( x + y ) ) | 
						
							| 52 | 50 51 | eqtrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( x + ( y / 2 ) ) + ( y / 2 ) ) = ( x + y ) ) | 
						
							| 53 | 49 52 | breqtrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x + ( y / 2 ) ) < ( x + y ) ) | 
						
							| 54 |  | iccssioo |  |-  ( ( ( ( x - y ) e. RR* /\ ( x + y ) e. RR* ) /\ ( ( x - y ) < ( x - ( y / 2 ) ) /\ ( x + ( y / 2 ) ) < ( x + y ) ) ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) C_ ( ( x - y ) (,) ( x + y ) ) ) | 
						
							| 55 | 33 36 48 53 54 | syl22anc |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) C_ ( ( x - y ) (,) ( x + y ) ) ) | 
						
							| 56 |  | ssdomg |  |-  ( ( ( x - y ) (,) ( x + y ) ) e. _V -> ( ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) C_ ( ( x - y ) (,) ( x + y ) ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ~<_ ( ( x - y ) (,) ( x + y ) ) ) ) | 
						
							| 57 | 29 55 56 | mpsyl |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ~<_ ( ( x - y ) (,) ( x + y ) ) ) | 
						
							| 58 |  | domtr |  |-  ( ( ~P NN ~<_ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) /\ ( ( x - ( y / 2 ) ) [,] ( x + ( y / 2 ) ) ) ~<_ ( ( x - y ) (,) ( x + y ) ) ) -> ~P NN ~<_ ( ( x - y ) (,) ( x + y ) ) ) | 
						
							| 59 | 28 57 58 | syl2anc |  |-  ( ( x e. RR /\ y e. RR+ ) -> ~P NN ~<_ ( ( x - y ) (,) ( x + y ) ) ) | 
						
							| 60 |  | eqid |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 61 | 60 | bl2ioo |  |-  ( ( x e. RR /\ y e. RR ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) = ( ( x - y ) (,) ( x + y ) ) ) | 
						
							| 62 | 30 61 | sylan2 |  |-  ( ( x e. RR /\ y e. RR+ ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) = ( ( x - y ) (,) ( x + y ) ) ) | 
						
							| 63 | 59 62 | breqtrrd |  |-  ( ( x e. RR /\ y e. RR+ ) -> ~P NN ~<_ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ) | 
						
							| 64 | 11 63 | sylan |  |-  ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) -> ~P NN ~<_ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ) | 
						
							| 65 |  | simplll |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> A e. ( topGen ` ran (,) ) ) | 
						
							| 66 |  | simpr |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) | 
						
							| 67 |  | ssdomg |  |-  ( A e. ( topGen ` ran (,) ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ~<_ A ) ) | 
						
							| 68 | 65 66 67 | sylc |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ~<_ A ) | 
						
							| 69 |  | domtr |  |-  ( ( ~P NN ~<_ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) ~<_ A ) -> ~P NN ~<_ A ) | 
						
							| 70 | 64 68 69 | syl2an2r |  |-  ( ( ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) /\ y e. RR+ ) /\ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) -> ~P NN ~<_ A ) | 
						
							| 71 |  | eqid |  |-  ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 72 | 60 71 | tgioo |  |-  ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 73 | 72 | eleq2i |  |-  ( A e. ( topGen ` ran (,) ) <-> A e. ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) | 
						
							| 74 | 60 | rexmet |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) | 
						
							| 75 | 71 | mopni2 |  |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) /\ x e. A ) -> E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) | 
						
							| 76 | 74 75 | mp3an1 |  |-  ( ( A e. ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) /\ x e. A ) -> E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) | 
						
							| 77 | 73 76 | sylanb |  |-  ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> E. y e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) y ) C_ A ) | 
						
							| 78 | 70 77 | r19.29a |  |-  ( ( A e. ( topGen ` ran (,) ) /\ x e. A ) -> ~P NN ~<_ A ) | 
						
							| 79 | 78 | ex |  |-  ( A e. ( topGen ` ran (,) ) -> ( x e. A -> ~P NN ~<_ A ) ) | 
						
							| 80 | 79 | exlimdv |  |-  ( A e. ( topGen ` ran (,) ) -> ( E. x x e. A -> ~P NN ~<_ A ) ) | 
						
							| 81 | 10 80 | biimtrid |  |-  ( A e. ( topGen ` ran (,) ) -> ( A =/= (/) -> ~P NN ~<_ A ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( A e. ( topGen ` ran (,) ) /\ A =/= (/) ) -> ~P NN ~<_ A ) | 
						
							| 83 |  | sbth |  |-  ( ( A ~<_ ~P NN /\ ~P NN ~<_ A ) -> A ~~ ~P NN ) | 
						
							| 84 | 9 82 83 | syl2an2r |  |-  ( ( A e. ( topGen ` ran (,) ) /\ A =/= (/) ) -> A ~~ ~P NN ) |