| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neips.1 |  |-  X = U. J | 
						
							| 2 |  | simplr |  |-  ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> N C_ X ) | 
						
							| 3 |  | sseq2 |  |-  ( g = S -> ( S C_ g <-> S C_ S ) ) | 
						
							| 4 |  | sseq1 |  |-  ( g = S -> ( g C_ N <-> S C_ N ) ) | 
						
							| 5 | 3 4 | anbi12d |  |-  ( g = S -> ( ( S C_ g /\ g C_ N ) <-> ( S C_ S /\ S C_ N ) ) ) | 
						
							| 6 |  | ssid |  |-  S C_ S | 
						
							| 7 | 6 | biantrur |  |-  ( S C_ N <-> ( S C_ S /\ S C_ N ) ) | 
						
							| 8 | 5 7 | bitr4di |  |-  ( g = S -> ( ( S C_ g /\ g C_ N ) <-> S C_ N ) ) | 
						
							| 9 | 8 | rspcev |  |-  ( ( S e. J /\ S C_ N ) -> E. g e. J ( S C_ g /\ g C_ N ) ) | 
						
							| 10 | 9 | adantlr |  |-  ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> E. g e. J ( S C_ g /\ g C_ N ) ) | 
						
							| 11 | 2 10 | jca |  |-  ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) | 
						
							| 12 | 11 | ex |  |-  ( ( S e. J /\ N C_ X ) -> ( S C_ N -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) | 
						
							| 13 | 12 | 3adant1 |  |-  ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) | 
						
							| 14 | 1 | eltopss |  |-  ( ( J e. Top /\ S e. J ) -> S C_ X ) | 
						
							| 15 | 1 | isnei |  |-  ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) | 
						
							| 16 | 14 15 | syldan |  |-  ( ( J e. Top /\ S e. J ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) | 
						
							| 18 | 13 17 | sylibrd |  |-  ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N -> N e. ( ( nei ` J ) ` S ) ) ) | 
						
							| 19 |  | ssnei |  |-  ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ N ) | 
						
							| 20 | 19 | ex |  |-  ( J e. Top -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) | 
						
							| 22 | 18 21 | impbid |  |-  ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |