Step |
Hyp |
Ref |
Expression |
1 |
|
neips.1 |
|- X = U. J |
2 |
|
simplr |
|- ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> N C_ X ) |
3 |
|
sseq2 |
|- ( g = S -> ( S C_ g <-> S C_ S ) ) |
4 |
|
sseq1 |
|- ( g = S -> ( g C_ N <-> S C_ N ) ) |
5 |
3 4
|
anbi12d |
|- ( g = S -> ( ( S C_ g /\ g C_ N ) <-> ( S C_ S /\ S C_ N ) ) ) |
6 |
|
ssid |
|- S C_ S |
7 |
6
|
biantrur |
|- ( S C_ N <-> ( S C_ S /\ S C_ N ) ) |
8 |
5 7
|
bitr4di |
|- ( g = S -> ( ( S C_ g /\ g C_ N ) <-> S C_ N ) ) |
9 |
8
|
rspcev |
|- ( ( S e. J /\ S C_ N ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
10 |
9
|
adantlr |
|- ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
11 |
2 10
|
jca |
|- ( ( ( S e. J /\ N C_ X ) /\ S C_ N ) -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) |
12 |
11
|
ex |
|- ( ( S e. J /\ N C_ X ) -> ( S C_ N -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
13 |
12
|
3adant1 |
|- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N -> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
14 |
1
|
eltopss |
|- ( ( J e. Top /\ S e. J ) -> S C_ X ) |
15 |
1
|
isnei |
|- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
16 |
14 15
|
syldan |
|- ( ( J e. Top /\ S e. J ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
17 |
16
|
3adant3 |
|- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
18 |
13 17
|
sylibrd |
|- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N -> N e. ( ( nei ` J ) ` S ) ) ) |
19 |
|
ssnei |
|- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ N ) |
20 |
19
|
ex |
|- ( J e. Top -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) |
21 |
20
|
3ad2ant1 |
|- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) -> S C_ N ) ) |
22 |
18 21
|
impbid |
|- ( ( J e. Top /\ S e. J /\ N C_ X ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |