Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
|- ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) |
2 |
|
odd2np1 |
|- ( B e. ZZ -> ( -. 2 || B <-> E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
3 |
1 2
|
bi2anan9 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) ) |
4 |
|
reeanv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
5 |
|
2z |
|- 2 e. ZZ |
6 |
|
zaddcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a + b ) e. ZZ ) |
7 |
6
|
peano2zd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( a + b ) + 1 ) e. ZZ ) |
8 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ ( ( a + b ) + 1 ) e. ZZ ) -> 2 || ( 2 x. ( ( a + b ) + 1 ) ) ) |
9 |
5 7 8
|
sylancr |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( 2 x. ( ( a + b ) + 1 ) ) ) |
10 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
11 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
12 |
|
addcl |
|- ( ( a e. CC /\ b e. CC ) -> ( a + b ) e. CC ) |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
ax-1cn |
|- 1 e. CC |
15 |
|
adddi |
|- ( ( 2 e. CC /\ ( a + b ) e. CC /\ 1 e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) |
16 |
13 14 15
|
mp3an13 |
|- ( ( a + b ) e. CC -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) |
17 |
12 16
|
syl |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) |
18 |
|
adddi |
|- ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) |
19 |
13 18
|
mp3an1 |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) |
20 |
19
|
oveq1d |
|- ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) ) |
21 |
17 20
|
eqtrd |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) ) |
22 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
23 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
24 |
22 23
|
eqtri |
|- ( 2 x. 1 ) = ( 1 + 1 ) |
25 |
24
|
oveq2i |
|- ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) |
26 |
21 25
|
eqtrdi |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) ) |
27 |
|
mulcl |
|- ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) |
28 |
13 27
|
mpan |
|- ( a e. CC -> ( 2 x. a ) e. CC ) |
29 |
|
mulcl |
|- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) |
30 |
13 29
|
mpan |
|- ( b e. CC -> ( 2 x. b ) e. CC ) |
31 |
|
add4 |
|- ( ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) /\ ( 1 e. CC /\ 1 e. CC ) ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
32 |
14 14 31
|
mpanr12 |
|- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
33 |
28 30 32
|
syl2an |
|- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
34 |
26 33
|
eqtrd |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
35 |
10 11 34
|
syl2an |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
36 |
9 35
|
breqtrd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
37 |
|
oveq12 |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) = ( A + B ) ) |
38 |
37
|
breq2d |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( 2 || ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) <-> 2 || ( A + B ) ) ) |
39 |
36 38
|
syl5ibcom |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) ) |
40 |
39
|
rexlimivv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) |
41 |
4 40
|
sylbir |
|- ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) |
42 |
3 41
|
syl6bi |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) -> 2 || ( A + B ) ) ) |
43 |
42
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ -. 2 || B ) ) -> 2 || ( A + B ) ) |
44 |
43
|
an4s |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A + B ) ) |