| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 |  |-  ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) | 
						
							| 2 |  | odd2np1 |  |-  ( B e. ZZ -> ( -. 2 || B <-> E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) | 
						
							| 3 | 1 2 | bi2anan9 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) ) | 
						
							| 4 |  | reeanv |  |-  ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) | 
						
							| 5 |  | 2z |  |-  2 e. ZZ | 
						
							| 6 |  | zaddcl |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( a + b ) e. ZZ ) | 
						
							| 7 | 6 | peano2zd |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( ( a + b ) + 1 ) e. ZZ ) | 
						
							| 8 |  | dvdsmul1 |  |-  ( ( 2 e. ZZ /\ ( ( a + b ) + 1 ) e. ZZ ) -> 2 || ( 2 x. ( ( a + b ) + 1 ) ) ) | 
						
							| 9 | 5 7 8 | sylancr |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( 2 x. ( ( a + b ) + 1 ) ) ) | 
						
							| 10 |  | zcn |  |-  ( a e. ZZ -> a e. CC ) | 
						
							| 11 |  | zcn |  |-  ( b e. ZZ -> b e. CC ) | 
						
							| 12 |  | addcl |  |-  ( ( a e. CC /\ b e. CC ) -> ( a + b ) e. CC ) | 
						
							| 13 |  | 2cn |  |-  2 e. CC | 
						
							| 14 |  | ax-1cn |  |-  1 e. CC | 
						
							| 15 |  | adddi |  |-  ( ( 2 e. CC /\ ( a + b ) e. CC /\ 1 e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) | 
						
							| 16 | 13 14 15 | mp3an13 |  |-  ( ( a + b ) e. CC -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) | 
						
							| 17 | 12 16 | syl |  |-  ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) | 
						
							| 18 |  | adddi |  |-  ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) | 
						
							| 19 | 13 18 | mp3an1 |  |-  ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) ) | 
						
							| 21 | 17 20 | eqtrd |  |-  ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) ) | 
						
							| 22 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 23 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 24 | 22 23 | eqtri |  |-  ( 2 x. 1 ) = ( 1 + 1 ) | 
						
							| 25 | 24 | oveq2i |  |-  ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) | 
						
							| 26 | 21 25 | eqtrdi |  |-  ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) ) | 
						
							| 27 |  | mulcl |  |-  ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) | 
						
							| 28 | 13 27 | mpan |  |-  ( a e. CC -> ( 2 x. a ) e. CC ) | 
						
							| 29 |  | mulcl |  |-  ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) | 
						
							| 30 | 13 29 | mpan |  |-  ( b e. CC -> ( 2 x. b ) e. CC ) | 
						
							| 31 |  | add4 |  |-  ( ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) /\ ( 1 e. CC /\ 1 e. CC ) ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) | 
						
							| 32 | 14 14 31 | mpanr12 |  |-  ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) | 
						
							| 33 | 28 30 32 | syl2an |  |-  ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) | 
						
							| 34 | 26 33 | eqtrd |  |-  ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) | 
						
							| 35 | 10 11 34 | syl2an |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) | 
						
							| 36 | 9 35 | breqtrd |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) | 
						
							| 37 |  | oveq12 |  |-  ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) = ( A + B ) ) | 
						
							| 38 | 37 | breq2d |  |-  ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( 2 || ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) <-> 2 || ( A + B ) ) ) | 
						
							| 39 | 36 38 | syl5ibcom |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) ) | 
						
							| 40 | 39 | rexlimivv |  |-  ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) | 
						
							| 41 | 4 40 | sylbir |  |-  ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) | 
						
							| 42 | 3 41 | biimtrdi |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) -> 2 || ( A + B ) ) ) | 
						
							| 43 | 42 | imp |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ -. 2 || B ) ) -> 2 || ( A + B ) ) | 
						
							| 44 | 43 | an4s |  |-  ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A + B ) ) |