Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
|- ( A e. Odd -> A e. ZZ ) |
2 |
|
oddz |
|- ( B e. Odd -> B e. ZZ ) |
3 |
|
zaddcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. Odd /\ B e. Odd ) -> ( A + B ) e. ZZ ) |
5 |
|
eqeq1 |
|- ( a = A -> ( a = ( ( 2 x. i ) + 1 ) <-> A = ( ( 2 x. i ) + 1 ) ) ) |
6 |
5
|
rexbidv |
|- ( a = A -> ( E. i e. ZZ a = ( ( 2 x. i ) + 1 ) <-> E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) ) |
7 |
|
dfodd6 |
|- Odd = { a e. ZZ | E. i e. ZZ a = ( ( 2 x. i ) + 1 ) } |
8 |
6 7
|
elrab2 |
|- ( A e. Odd <-> ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) ) |
9 |
|
eqeq1 |
|- ( b = B -> ( b = ( ( 2 x. j ) + 1 ) <-> B = ( ( 2 x. j ) + 1 ) ) ) |
10 |
9
|
rexbidv |
|- ( b = B -> ( E. j e. ZZ b = ( ( 2 x. j ) + 1 ) <-> E. j e. ZZ B = ( ( 2 x. j ) + 1 ) ) ) |
11 |
|
dfodd6 |
|- Odd = { b e. ZZ | E. j e. ZZ b = ( ( 2 x. j ) + 1 ) } |
12 |
10 11
|
elrab2 |
|- ( B e. Odd <-> ( B e. ZZ /\ E. j e. ZZ B = ( ( 2 x. j ) + 1 ) ) ) |
13 |
|
zaddcl |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( i + j ) e. ZZ ) |
14 |
13
|
ex |
|- ( i e. ZZ -> ( j e. ZZ -> ( i + j ) e. ZZ ) ) |
15 |
14
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( j e. ZZ -> ( i + j ) e. ZZ ) ) |
16 |
15
|
imp |
|- ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( i + j ) e. ZZ ) |
17 |
16
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( ( 2 x. j ) + 1 ) ) -> ( i + j ) e. ZZ ) |
18 |
17
|
peano2zd |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( ( 2 x. j ) + 1 ) ) -> ( ( i + j ) + 1 ) e. ZZ ) |
19 |
|
oveq2 |
|- ( n = ( ( i + j ) + 1 ) -> ( 2 x. n ) = ( 2 x. ( ( i + j ) + 1 ) ) ) |
20 |
19
|
eqeq2d |
|- ( n = ( ( i + j ) + 1 ) -> ( ( A + B ) = ( 2 x. n ) <-> ( A + B ) = ( 2 x. ( ( i + j ) + 1 ) ) ) ) |
21 |
20
|
adantl |
|- ( ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( ( 2 x. j ) + 1 ) ) /\ n = ( ( i + j ) + 1 ) ) -> ( ( A + B ) = ( 2 x. n ) <-> ( A + B ) = ( 2 x. ( ( i + j ) + 1 ) ) ) ) |
22 |
|
oveq12 |
|- ( ( A = ( ( 2 x. i ) + 1 ) /\ B = ( ( 2 x. j ) + 1 ) ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) ) |
23 |
22
|
ex |
|- ( A = ( ( 2 x. i ) + 1 ) -> ( B = ( ( 2 x. j ) + 1 ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) ) ) |
24 |
23
|
ad3antlr |
|- ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( B = ( ( 2 x. j ) + 1 ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) ) ) |
25 |
24
|
imp |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( ( 2 x. j ) + 1 ) ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) ) |
26 |
|
zcn |
|- ( i e. ZZ -> i e. CC ) |
27 |
|
zcn |
|- ( j e. ZZ -> j e. CC ) |
28 |
|
2cnd |
|- ( j e. CC -> 2 e. CC ) |
29 |
28
|
anim1i |
|- ( ( j e. CC /\ i e. CC ) -> ( 2 e. CC /\ i e. CC ) ) |
30 |
29
|
ancoms |
|- ( ( i e. CC /\ j e. CC ) -> ( 2 e. CC /\ i e. CC ) ) |
31 |
|
mulcl |
|- ( ( 2 e. CC /\ i e. CC ) -> ( 2 x. i ) e. CC ) |
32 |
30 31
|
syl |
|- ( ( i e. CC /\ j e. CC ) -> ( 2 x. i ) e. CC ) |
33 |
|
1cnd |
|- ( ( i e. CC /\ j e. CC ) -> 1 e. CC ) |
34 |
|
2cnd |
|- ( i e. CC -> 2 e. CC ) |
35 |
|
mulcl |
|- ( ( 2 e. CC /\ j e. CC ) -> ( 2 x. j ) e. CC ) |
36 |
34 35
|
sylan |
|- ( ( i e. CC /\ j e. CC ) -> ( 2 x. j ) e. CC ) |
37 |
32 33 36 33
|
add4d |
|- ( ( i e. CC /\ j e. CC ) -> ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) = ( ( ( 2 x. i ) + ( 2 x. j ) ) + ( 1 + 1 ) ) ) |
38 |
|
2cnd |
|- ( ( i e. CC /\ j e. CC ) -> 2 e. CC ) |
39 |
|
simpl |
|- ( ( i e. CC /\ j e. CC ) -> i e. CC ) |
40 |
|
simpr |
|- ( ( i e. CC /\ j e. CC ) -> j e. CC ) |
41 |
38 39 40
|
adddid |
|- ( ( i e. CC /\ j e. CC ) -> ( 2 x. ( i + j ) ) = ( ( 2 x. i ) + ( 2 x. j ) ) ) |
42 |
41
|
oveq1d |
|- ( ( i e. CC /\ j e. CC ) -> ( ( 2 x. ( i + j ) ) + ( 2 x. 1 ) ) = ( ( ( 2 x. i ) + ( 2 x. j ) ) + ( 2 x. 1 ) ) ) |
43 |
|
addcl |
|- ( ( i e. CC /\ j e. CC ) -> ( i + j ) e. CC ) |
44 |
38 43 33
|
adddid |
|- ( ( i e. CC /\ j e. CC ) -> ( 2 x. ( ( i + j ) + 1 ) ) = ( ( 2 x. ( i + j ) ) + ( 2 x. 1 ) ) ) |
45 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
46 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
47 |
45 46
|
eqtr4i |
|- ( 1 + 1 ) = ( 2 x. 1 ) |
48 |
47
|
a1i |
|- ( ( i e. CC /\ j e. CC ) -> ( 1 + 1 ) = ( 2 x. 1 ) ) |
49 |
48
|
oveq2d |
|- ( ( i e. CC /\ j e. CC ) -> ( ( ( 2 x. i ) + ( 2 x. j ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. i ) + ( 2 x. j ) ) + ( 2 x. 1 ) ) ) |
50 |
42 44 49
|
3eqtr4rd |
|- ( ( i e. CC /\ j e. CC ) -> ( ( ( 2 x. i ) + ( 2 x. j ) ) + ( 1 + 1 ) ) = ( 2 x. ( ( i + j ) + 1 ) ) ) |
51 |
37 50
|
eqtrd |
|- ( ( i e. CC /\ j e. CC ) -> ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) = ( 2 x. ( ( i + j ) + 1 ) ) ) |
52 |
26 27 51
|
syl2an |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) = ( 2 x. ( ( i + j ) + 1 ) ) ) |
53 |
52
|
ex |
|- ( i e. ZZ -> ( j e. ZZ -> ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) = ( 2 x. ( ( i + j ) + 1 ) ) ) ) |
54 |
53
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( j e. ZZ -> ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) = ( 2 x. ( ( i + j ) + 1 ) ) ) ) |
55 |
54
|
imp |
|- ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) = ( 2 x. ( ( i + j ) + 1 ) ) ) |
56 |
55
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( ( 2 x. j ) + 1 ) ) -> ( ( ( 2 x. i ) + 1 ) + ( ( 2 x. j ) + 1 ) ) = ( 2 x. ( ( i + j ) + 1 ) ) ) |
57 |
25 56
|
eqtrd |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( ( 2 x. j ) + 1 ) ) -> ( A + B ) = ( 2 x. ( ( i + j ) + 1 ) ) ) |
58 |
18 21 57
|
rspcedvd |
|- ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( ( 2 x. j ) + 1 ) ) -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) |
59 |
58
|
rexlimdva2 |
|- ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( E. j e. ZZ B = ( ( 2 x. j ) + 1 ) -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) |
60 |
59
|
expimpd |
|- ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) -> ( ( B e. ZZ /\ E. j e. ZZ B = ( ( 2 x. j ) + 1 ) ) -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) |
61 |
60
|
rexlimdva2 |
|- ( A e. ZZ -> ( E. i e. ZZ A = ( ( 2 x. i ) + 1 ) -> ( ( B e. ZZ /\ E. j e. ZZ B = ( ( 2 x. j ) + 1 ) ) -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) ) |
62 |
61
|
imp |
|- ( ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) -> ( ( B e. ZZ /\ E. j e. ZZ B = ( ( 2 x. j ) + 1 ) ) -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) |
63 |
12 62
|
syl5bi |
|- ( ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) -> ( B e. Odd -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) |
64 |
8 63
|
sylbi |
|- ( A e. Odd -> ( B e. Odd -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) |
65 |
64
|
imp |
|- ( ( A e. Odd /\ B e. Odd ) -> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) |
66 |
|
eqeq1 |
|- ( z = ( A + B ) -> ( z = ( 2 x. n ) <-> ( A + B ) = ( 2 x. n ) ) ) |
67 |
66
|
rexbidv |
|- ( z = ( A + B ) -> ( E. n e. ZZ z = ( 2 x. n ) <-> E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) |
68 |
|
dfeven4 |
|- Even = { z e. ZZ | E. n e. ZZ z = ( 2 x. n ) } |
69 |
67 68
|
elrab2 |
|- ( ( A + B ) e. Even <-> ( ( A + B ) e. ZZ /\ E. n e. ZZ ( A + B ) = ( 2 x. n ) ) ) |
70 |
4 65 69
|
sylanbrc |
|- ( ( A e. Odd /\ B e. Odd ) -> ( A + B ) e. Even ) |