Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
|- O = ( oppCat ` C ) |
2 |
|
oppcbas.2 |
|- B = ( Base ` C ) |
3 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
4 |
|
1re |
|- 1 e. RR |
5 |
|
1nn |
|- 1 e. NN |
6 |
|
4nn0 |
|- 4 e. NN0 |
7 |
|
1nn0 |
|- 1 e. NN0 |
8 |
|
1lt10 |
|- 1 < ; 1 0 |
9 |
5 6 7 8
|
declti |
|- 1 < ; 1 4 |
10 |
4 9
|
ltneii |
|- 1 =/= ; 1 4 |
11 |
|
basendx |
|- ( Base ` ndx ) = 1 |
12 |
|
homndx |
|- ( Hom ` ndx ) = ; 1 4 |
13 |
11 12
|
neeq12i |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) <-> 1 =/= ; 1 4 ) |
14 |
10 13
|
mpbir |
|- ( Base ` ndx ) =/= ( Hom ` ndx ) |
15 |
3 14
|
setsnid |
|- ( Base ` C ) = ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) |
16 |
|
5nn |
|- 5 e. NN |
17 |
|
4lt5 |
|- 4 < 5 |
18 |
7 6 16 17
|
declt |
|- ; 1 4 < ; 1 5 |
19 |
|
4nn |
|- 4 e. NN |
20 |
7 19
|
decnncl |
|- ; 1 4 e. NN |
21 |
20
|
nnrei |
|- ; 1 4 e. RR |
22 |
7 16
|
decnncl |
|- ; 1 5 e. NN |
23 |
22
|
nnrei |
|- ; 1 5 e. RR |
24 |
4 21 23
|
lttri |
|- ( ( 1 < ; 1 4 /\ ; 1 4 < ; 1 5 ) -> 1 < ; 1 5 ) |
25 |
9 18 24
|
mp2an |
|- 1 < ; 1 5 |
26 |
4 25
|
ltneii |
|- 1 =/= ; 1 5 |
27 |
|
ccondx |
|- ( comp ` ndx ) = ; 1 5 |
28 |
11 27
|
neeq12i |
|- ( ( Base ` ndx ) =/= ( comp ` ndx ) <-> 1 =/= ; 1 5 ) |
29 |
26 28
|
mpbir |
|- ( Base ` ndx ) =/= ( comp ` ndx ) |
30 |
3 29
|
setsnid |
|- ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
31 |
15 30
|
eqtri |
|- ( Base ` C ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
32 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
33 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
34 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
35 |
32 33 34 1
|
oppcval |
|- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
36 |
35
|
fveq2d |
|- ( C e. _V -> ( Base ` O ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) |
37 |
31 36
|
eqtr4id |
|- ( C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
38 |
|
base0 |
|- (/) = ( Base ` (/) ) |
39 |
|
fvprc |
|- ( -. C e. _V -> ( Base ` C ) = (/) ) |
40 |
|
fvprc |
|- ( -. C e. _V -> ( oppCat ` C ) = (/) ) |
41 |
1 40
|
eqtrid |
|- ( -. C e. _V -> O = (/) ) |
42 |
41
|
fveq2d |
|- ( -. C e. _V -> ( Base ` O ) = ( Base ` (/) ) ) |
43 |
38 39 42
|
3eqtr4a |
|- ( -. C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
44 |
37 43
|
pm2.61i |
|- ( Base ` C ) = ( Base ` O ) |
45 |
2 44
|
eqtri |
|- B = ( Base ` O ) |