| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppcbas.1 |  |-  O = ( oppCat ` C ) | 
						
							| 2 |  | oppcbas.2 |  |-  B = ( Base ` C ) | 
						
							| 3 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 4 |  | slotsbhcdif |  |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) | 
						
							| 5 | 4 | simp1i |  |-  ( Base ` ndx ) =/= ( Hom ` ndx ) | 
						
							| 6 | 3 5 | setsnid |  |-  ( Base ` C ) = ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) | 
						
							| 7 | 4 | simp2i |  |-  ( Base ` ndx ) =/= ( comp ` ndx ) | 
						
							| 8 | 3 7 | setsnid |  |-  ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) | 
						
							| 9 | 6 8 | eqtri |  |-  ( Base ` C ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 11 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 12 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 13 | 10 11 12 1 | oppcval |  |-  ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( C e. _V -> ( Base ` O ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) | 
						
							| 15 | 9 14 | eqtr4id |  |-  ( C e. _V -> ( Base ` C ) = ( Base ` O ) ) | 
						
							| 16 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 17 | 16 | eqcomi |  |-  ( Base ` (/) ) = (/) | 
						
							| 18 | 17 1 | fveqprc |  |-  ( -. C e. _V -> ( Base ` C ) = ( Base ` O ) ) | 
						
							| 19 | 15 18 | pm2.61i |  |-  ( Base ` C ) = ( Base ` O ) | 
						
							| 20 | 2 19 | eqtri |  |-  B = ( Base ` O ) |