Description: An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oppcbas.1 | |- O = ( oppCat ` C ) |
|
Assertion | oppccat | |- ( C e. Cat -> O e. Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.1 | |- O = ( oppCat ` C ) |
|
2 | 1 | oppccatid | |- ( C e. Cat -> ( O e. Cat /\ ( Id ` O ) = ( Id ` C ) ) ) |
3 | 2 | simpld | |- ( C e. Cat -> O e. Cat ) |