Step |
Hyp |
Ref |
Expression |
1 |
|
df-oppc |
|- oppCat = ( f e. _V |-> ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) ) |
2 |
1
|
funmpt2 |
|- Fun oppCat |
3 |
|
ffvresb |
|- ( Fun oppCat -> ( ( oppCat |` Cat ) : Cat --> Cat <-> A. c e. Cat ( c e. dom oppCat /\ ( oppCat ` c ) e. Cat ) ) ) |
4 |
2 3
|
ax-mp |
|- ( ( oppCat |` Cat ) : Cat --> Cat <-> A. c e. Cat ( c e. dom oppCat /\ ( oppCat ` c ) e. Cat ) ) |
5 |
|
elex |
|- ( c e. Cat -> c e. _V ) |
6 |
|
ovex |
|- ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) e. _V |
7 |
6 1
|
dmmpti |
|- dom oppCat = _V |
8 |
5 7
|
eleqtrrdi |
|- ( c e. Cat -> c e. dom oppCat ) |
9 |
|
eqid |
|- ( oppCat ` c ) = ( oppCat ` c ) |
10 |
9
|
oppccat |
|- ( c e. Cat -> ( oppCat ` c ) e. Cat ) |
11 |
8 10
|
jca |
|- ( c e. Cat -> ( c e. dom oppCat /\ ( oppCat ` c ) e. Cat ) ) |
12 |
4 11
|
mprgbir |
|- ( oppCat |` Cat ) : Cat --> Cat |