| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcco.b |
|- B = ( Base ` C ) |
| 2 |
|
oppcco.c |
|- .x. = ( comp ` C ) |
| 3 |
|
oppcco.o |
|- O = ( oppCat ` C ) |
| 4 |
|
oppcco.x |
|- ( ph -> X e. B ) |
| 5 |
|
oppcco.y |
|- ( ph -> Y e. B ) |
| 6 |
|
oppcco.z |
|- ( ph -> Z e. B ) |
| 7 |
1 2 3 4 5 6
|
oppccofval |
|- ( ph -> ( <. X , Y >. ( comp ` O ) Z ) = tpos ( <. Z , Y >. .x. X ) ) |
| 8 |
7
|
oveqd |
|- ( ph -> ( G ( <. X , Y >. ( comp ` O ) Z ) F ) = ( G tpos ( <. Z , Y >. .x. X ) F ) ) |
| 9 |
|
ovtpos |
|- ( G tpos ( <. Z , Y >. .x. X ) F ) = ( F ( <. Z , Y >. .x. X ) G ) |
| 10 |
8 9
|
eqtrdi |
|- ( ph -> ( G ( <. X , Y >. ( comp ` O ) Z ) F ) = ( F ( <. Z , Y >. .x. X ) G ) ) |