| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppcco.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | oppcco.c |  |-  .x. = ( comp ` C ) | 
						
							| 3 |  | oppcco.o |  |-  O = ( oppCat ` C ) | 
						
							| 4 |  | oppcco.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | oppcco.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | oppcco.z |  |-  ( ph -> Z e. B ) | 
						
							| 7 |  | elfvex |  |-  ( X e. ( Base ` C ) -> C e. _V ) | 
						
							| 8 | 7 1 | eleq2s |  |-  ( X e. B -> C e. _V ) | 
						
							| 9 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 10 | 1 9 2 3 | oppcval |  |-  ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) | 
						
							| 11 | 4 8 10 | 3syl |  |-  ( ph -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ph -> ( comp ` O ) = ( comp ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) ) | 
						
							| 13 |  | ovex |  |-  ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) e. _V | 
						
							| 14 | 1 | fvexi |  |-  B e. _V | 
						
							| 15 | 14 14 | xpex |  |-  ( B X. B ) e. _V | 
						
							| 16 | 15 14 | mpoex |  |-  ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) e. _V | 
						
							| 17 |  | ccoid |  |-  comp = Slot ( comp ` ndx ) | 
						
							| 18 | 17 | setsid |  |-  ( ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) e. _V /\ ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) e. _V ) -> ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) = ( comp ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) ) | 
						
							| 19 | 13 16 18 | mp2an |  |-  ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) = ( comp ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) | 
						
							| 20 | 12 19 | eqtr4di |  |-  ( ph -> ( comp ` O ) = ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) ) | 
						
							| 21 |  | simprr |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> z = Z ) | 
						
							| 22 |  | simprl |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> u = <. X , Y >. ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` u ) = ( 2nd ` <. X , Y >. ) ) | 
						
							| 24 | 5 | adantr |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> Y e. B ) | 
						
							| 25 |  | op2ndg |  |-  ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) | 
						
							| 26 | 4 24 25 | syl2an2r |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) | 
						
							| 27 | 23 26 | eqtrd |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` u ) = Y ) | 
						
							| 28 | 21 27 | opeq12d |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> <. z , ( 2nd ` u ) >. = <. Z , Y >. ) | 
						
							| 29 | 22 | fveq2d |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 1st ` u ) = ( 1st ` <. X , Y >. ) ) | 
						
							| 30 |  | op1stg |  |-  ( ( X e. B /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) | 
						
							| 31 | 4 24 30 | syl2an2r |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 1st ` <. X , Y >. ) = X ) | 
						
							| 32 | 29 31 | eqtrd |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 1st ` u ) = X ) | 
						
							| 33 | 28 32 | oveq12d |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) = ( <. Z , Y >. .x. X ) ) | 
						
							| 34 | 33 | tposeqd |  |-  ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) = tpos ( <. Z , Y >. .x. X ) ) | 
						
							| 35 | 4 5 | opelxpd |  |-  ( ph -> <. X , Y >. e. ( B X. B ) ) | 
						
							| 36 |  | ovex |  |-  ( <. Z , Y >. .x. X ) e. _V | 
						
							| 37 | 36 | tposex |  |-  tpos ( <. Z , Y >. .x. X ) e. _V | 
						
							| 38 | 37 | a1i |  |-  ( ph -> tpos ( <. Z , Y >. .x. X ) e. _V ) | 
						
							| 39 | 20 34 35 6 38 | ovmpod |  |-  ( ph -> ( <. X , Y >. ( comp ` O ) Z ) = tpos ( <. Z , Y >. .x. X ) ) |