Step |
Hyp |
Ref |
Expression |
1 |
|
oppchomfpropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
2 |
|
oppccomfpropd.1 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
3 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
4 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
5 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
6 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
7 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
8 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( comf ` C ) = ( comf ` D ) ) |
9 |
|
simplr3 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> z e. ( Base ` C ) ) |
10 |
|
simplr2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> y e. ( Base ` C ) ) |
11 |
|
simplr1 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> x e. ( Base ` C ) ) |
12 |
|
simprr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) |
13 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
14 |
4 13
|
oppchom |
|- ( y ( Hom ` ( oppCat ` C ) ) z ) = ( z ( Hom ` C ) y ) |
15 |
12 14
|
eleqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> g e. ( z ( Hom ` C ) y ) ) |
16 |
|
simprl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> f e. ( x ( Hom ` ( oppCat ` C ) ) y ) ) |
17 |
4 13
|
oppchom |
|- ( x ( Hom ` ( oppCat ` C ) ) y ) = ( y ( Hom ` C ) x ) |
18 |
16 17
|
eleqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> f e. ( y ( Hom ` C ) x ) ) |
19 |
3 4 5 6 7 8 9 10 11 15 18
|
comfeqval |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( f ( <. z , y >. ( comp ` C ) x ) g ) = ( f ( <. z , y >. ( comp ` D ) x ) g ) ) |
20 |
3 5 13 11 10 9
|
oppcco |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( f ( <. z , y >. ( comp ` C ) x ) g ) ) |
21 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
22 |
|
eqid |
|- ( oppCat ` D ) = ( oppCat ` D ) |
23 |
1
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( Base ` C ) = ( Base ` D ) ) |
25 |
11 24
|
eleqtrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> x e. ( Base ` D ) ) |
26 |
10 24
|
eleqtrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> y e. ( Base ` D ) ) |
27 |
9 24
|
eleqtrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> z e. ( Base ` D ) ) |
28 |
21 6 22 25 26 27
|
oppcco |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) = ( f ( <. z , y >. ( comp ` D ) x ) g ) ) |
29 |
19 20 28
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( oppCat ` C ) ) y ) /\ g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) |
30 |
29
|
ralrimivva |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` ( oppCat ` C ) ) y ) A. g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) |
31 |
30
|
ralrimivvva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` ( oppCat ` C ) ) y ) A. g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) |
32 |
|
eqid |
|- ( comp ` ( oppCat ` C ) ) = ( comp ` ( oppCat ` C ) ) |
33 |
|
eqid |
|- ( comp ` ( oppCat ` D ) ) = ( comp ` ( oppCat ` D ) ) |
34 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
35 |
13 3
|
oppcbas |
|- ( Base ` C ) = ( Base ` ( oppCat ` C ) ) |
36 |
35
|
a1i |
|- ( ph -> ( Base ` C ) = ( Base ` ( oppCat ` C ) ) ) |
37 |
22 21
|
oppcbas |
|- ( Base ` D ) = ( Base ` ( oppCat ` D ) ) |
38 |
23 37
|
eqtrdi |
|- ( ph -> ( Base ` C ) = ( Base ` ( oppCat ` D ) ) ) |
39 |
1
|
oppchomfpropd |
|- ( ph -> ( Homf ` ( oppCat ` C ) ) = ( Homf ` ( oppCat ` D ) ) ) |
40 |
32 33 34 36 38 39
|
comfeq |
|- ( ph -> ( ( comf ` ( oppCat ` C ) ) = ( comf ` ( oppCat ` D ) ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` ( oppCat ` C ) ) y ) A. g e. ( y ( Hom ` ( oppCat ` C ) ) z ) ( g ( <. x , y >. ( comp ` ( oppCat ` C ) ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` D ) ) z ) f ) ) ) |
41 |
31 40
|
mpbird |
|- ( ph -> ( comf ` ( oppCat ` C ) ) = ( comf ` ( oppCat ` D ) ) ) |