Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppchom.h | |- H = ( Hom ` C ) |
|
| oppchom.o | |- O = ( oppCat ` C ) |
||
| Assertion | oppchom | |- ( X ( Hom ` O ) Y ) = ( Y H X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchom.h | |- H = ( Hom ` C ) |
|
| 2 | oppchom.o | |- O = ( oppCat ` C ) |
|
| 3 | 1 2 | oppchomfval | |- tpos H = ( Hom ` O ) |
| 4 | 3 | oveqi | |- ( X tpos H Y ) = ( X ( Hom ` O ) Y ) |
| 5 | ovtpos | |- ( X tpos H Y ) = ( Y H X ) |
|
| 6 | 4 5 | eqtr3i | |- ( X ( Hom ` O ) Y ) = ( Y H X ) |