Metamath Proof Explorer


Theorem oppchomfpropd

Description: If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypothesis oppchomfpropd.1
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) )
Assertion oppchomfpropd
|- ( ph -> ( Homf ` ( oppCat ` C ) ) = ( Homf ` ( oppCat ` D ) ) )

Proof

Step Hyp Ref Expression
1 oppchomfpropd.1
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
2 1 tposeqd
 |-  ( ph -> tpos ( Homf ` C ) = tpos ( Homf ` D ) )
3 eqid
 |-  ( oppCat ` C ) = ( oppCat ` C )
4 eqid
 |-  ( Homf ` C ) = ( Homf ` C )
5 3 4 oppchomf
 |-  tpos ( Homf ` C ) = ( Homf ` ( oppCat ` C ) )
6 eqid
 |-  ( oppCat ` D ) = ( oppCat ` D )
7 eqid
 |-  ( Homf ` D ) = ( Homf ` D )
8 6 7 oppchomf
 |-  tpos ( Homf ` D ) = ( Homf ` ( oppCat ` D ) )
9 2 5 8 3eqtr3g
 |-  ( ph -> ( Homf ` ( oppCat ` C ) ) = ( Homf ` ( oppCat ` D ) ) )