Step |
Hyp |
Ref |
Expression |
1 |
|
oppchom.h |
|- H = ( Hom ` C ) |
2 |
|
oppchom.o |
|- O = ( oppCat ` C ) |
3 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
4 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
5 |
4
|
simp3i |
|- ( Hom ` ndx ) =/= ( comp ` ndx ) |
6 |
3 5
|
setsnid |
|- ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
7 |
1
|
fvexi |
|- H e. _V |
8 |
7
|
tposex |
|- tpos H e. _V |
9 |
3
|
setsid |
|- ( ( C e. _V /\ tpos H e. _V ) -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) |
10 |
8 9
|
mpan2 |
|- ( C e. _V -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) |
11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
12 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
13 |
11 1 12 2
|
oppcval |
|- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
14 |
13
|
fveq2d |
|- ( C e. _V -> ( Hom ` O ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) |
15 |
6 10 14
|
3eqtr4a |
|- ( C e. _V -> tpos H = ( Hom ` O ) ) |
16 |
|
tpos0 |
|- tpos (/) = (/) |
17 |
|
fvprc |
|- ( -. C e. _V -> ( Hom ` C ) = (/) ) |
18 |
1 17
|
eqtrid |
|- ( -. C e. _V -> H = (/) ) |
19 |
18
|
tposeqd |
|- ( -. C e. _V -> tpos H = tpos (/) ) |
20 |
|
fvprc |
|- ( -. C e. _V -> ( oppCat ` C ) = (/) ) |
21 |
2 20
|
eqtrid |
|- ( -. C e. _V -> O = (/) ) |
22 |
21
|
fveq2d |
|- ( -. C e. _V -> ( Hom ` O ) = ( Hom ` (/) ) ) |
23 |
3
|
str0 |
|- (/) = ( Hom ` (/) ) |
24 |
22 23
|
eqtr4di |
|- ( -. C e. _V -> ( Hom ` O ) = (/) ) |
25 |
16 19 24
|
3eqtr4a |
|- ( -. C e. _V -> tpos H = ( Hom ` O ) ) |
26 |
15 25
|
pm2.61i |
|- tpos H = ( Hom ` O ) |