| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppchom.h |  |-  H = ( Hom ` C ) | 
						
							| 2 |  | oppchom.o |  |-  O = ( oppCat ` C ) | 
						
							| 3 |  | homid |  |-  Hom = Slot ( Hom ` ndx ) | 
						
							| 4 |  | slotsbhcdif |  |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) | 
						
							| 5 | 4 | simp3i |  |-  ( Hom ` ndx ) =/= ( comp ` ndx ) | 
						
							| 6 | 3 5 | setsnid |  |-  ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) | 
						
							| 7 | 1 | fvexi |  |-  H e. _V | 
						
							| 8 | 7 | tposex |  |-  tpos H e. _V | 
						
							| 9 | 3 | setsid |  |-  ( ( C e. _V /\ tpos H e. _V ) -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( C e. _V -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 12 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 13 | 11 1 12 2 | oppcval |  |-  ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( C e. _V -> ( Hom ` O ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) | 
						
							| 15 | 6 10 14 | 3eqtr4a |  |-  ( C e. _V -> tpos H = ( Hom ` O ) ) | 
						
							| 16 |  | tpos0 |  |-  tpos (/) = (/) | 
						
							| 17 |  | fvprc |  |-  ( -. C e. _V -> ( Hom ` C ) = (/) ) | 
						
							| 18 | 1 17 | eqtrid |  |-  ( -. C e. _V -> H = (/) ) | 
						
							| 19 | 18 | tposeqd |  |-  ( -. C e. _V -> tpos H = tpos (/) ) | 
						
							| 20 |  | fvprc |  |-  ( -. C e. _V -> ( oppCat ` C ) = (/) ) | 
						
							| 21 | 2 20 | eqtrid |  |-  ( -. C e. _V -> O = (/) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( -. C e. _V -> ( Hom ` O ) = ( Hom ` (/) ) ) | 
						
							| 23 | 3 | str0 |  |-  (/) = ( Hom ` (/) ) | 
						
							| 24 | 22 23 | eqtr4di |  |-  ( -. C e. _V -> ( Hom ` O ) = (/) ) | 
						
							| 25 | 16 19 24 | 3eqtr4a |  |-  ( -. C e. _V -> tpos H = ( Hom ` O ) ) | 
						
							| 26 | 15 25 | pm2.61i |  |-  tpos H = ( Hom ` O ) |