Step |
Hyp |
Ref |
Expression |
1 |
|
oppchom.h |
|- H = ( Hom ` C ) |
2 |
|
oppchom.o |
|- O = ( oppCat ` C ) |
3 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
4 |
|
1nn0 |
|- 1 e. NN0 |
5 |
|
4nn |
|- 4 e. NN |
6 |
4 5
|
decnncl |
|- ; 1 4 e. NN |
7 |
6
|
nnrei |
|- ; 1 4 e. RR |
8 |
|
4nn0 |
|- 4 e. NN0 |
9 |
|
5nn |
|- 5 e. NN |
10 |
|
4lt5 |
|- 4 < 5 |
11 |
4 8 9 10
|
declt |
|- ; 1 4 < ; 1 5 |
12 |
7 11
|
ltneii |
|- ; 1 4 =/= ; 1 5 |
13 |
|
homndx |
|- ( Hom ` ndx ) = ; 1 4 |
14 |
|
ccondx |
|- ( comp ` ndx ) = ; 1 5 |
15 |
13 14
|
neeq12i |
|- ( ( Hom ` ndx ) =/= ( comp ` ndx ) <-> ; 1 4 =/= ; 1 5 ) |
16 |
12 15
|
mpbir |
|- ( Hom ` ndx ) =/= ( comp ` ndx ) |
17 |
3 16
|
setsnid |
|- ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
18 |
1
|
fvexi |
|- H e. _V |
19 |
18
|
tposex |
|- tpos H e. _V |
20 |
3
|
setsid |
|- ( ( C e. _V /\ tpos H e. _V ) -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) |
21 |
19 20
|
mpan2 |
|- ( C e. _V -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) |
22 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
23 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
24 |
22 1 23 2
|
oppcval |
|- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
25 |
24
|
fveq2d |
|- ( C e. _V -> ( Hom ` O ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) |
26 |
17 21 25
|
3eqtr4a |
|- ( C e. _V -> tpos H = ( Hom ` O ) ) |
27 |
|
tpos0 |
|- tpos (/) = (/) |
28 |
|
fvprc |
|- ( -. C e. _V -> ( Hom ` C ) = (/) ) |
29 |
1 28
|
eqtrid |
|- ( -. C e. _V -> H = (/) ) |
30 |
29
|
tposeqd |
|- ( -. C e. _V -> tpos H = tpos (/) ) |
31 |
|
fvprc |
|- ( -. C e. _V -> ( oppCat ` C ) = (/) ) |
32 |
2 31
|
eqtrid |
|- ( -. C e. _V -> O = (/) ) |
33 |
32
|
fveq2d |
|- ( -. C e. _V -> ( Hom ` O ) = ( Hom ` (/) ) ) |
34 |
|
df-hom |
|- Hom = Slot ; 1 4 |
35 |
34
|
str0 |
|- (/) = ( Hom ` (/) ) |
36 |
33 35
|
eqtr4di |
|- ( -. C e. _V -> ( Hom ` O ) = (/) ) |
37 |
27 30 36
|
3eqtr4a |
|- ( -. C e. _V -> tpos H = ( Hom ` O ) ) |
38 |
26 37
|
pm2.61i |
|- tpos H = ( Hom ` O ) |