Step |
Hyp |
Ref |
Expression |
1 |
|
oppcsect.b |
|- B = ( Base ` C ) |
2 |
|
oppcsect.o |
|- O = ( oppCat ` C ) |
3 |
|
oppcsect.c |
|- ( ph -> C e. Cat ) |
4 |
|
oppcsect.x |
|- ( ph -> X e. B ) |
5 |
|
oppcsect.y |
|- ( ph -> Y e. B ) |
6 |
|
oppcinv.s |
|- I = ( Inv ` C ) |
7 |
|
oppcinv.t |
|- J = ( Inv ` O ) |
8 |
|
incom |
|- ( ( X ( Sect ` O ) Y ) i^i `' ( Y ( Sect ` O ) X ) ) = ( `' ( Y ( Sect ` O ) X ) i^i ( X ( Sect ` O ) Y ) ) |
9 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
10 |
|
eqid |
|- ( Sect ` O ) = ( Sect ` O ) |
11 |
1 2 3 5 4 9 10
|
oppcsect2 |
|- ( ph -> ( Y ( Sect ` O ) X ) = `' ( Y ( Sect ` C ) X ) ) |
12 |
11
|
cnveqd |
|- ( ph -> `' ( Y ( Sect ` O ) X ) = `' `' ( Y ( Sect ` C ) X ) ) |
13 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
14 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
15 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
16 |
1 13 14 15 9 3 5 4
|
sectss |
|- ( ph -> ( Y ( Sect ` C ) X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) ) |
17 |
|
relxp |
|- Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) |
18 |
|
relss |
|- ( ( Y ( Sect ` C ) X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> ( Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> Rel ( Y ( Sect ` C ) X ) ) ) |
19 |
16 17 18
|
mpisyl |
|- ( ph -> Rel ( Y ( Sect ` C ) X ) ) |
20 |
|
dfrel2 |
|- ( Rel ( Y ( Sect ` C ) X ) <-> `' `' ( Y ( Sect ` C ) X ) = ( Y ( Sect ` C ) X ) ) |
21 |
19 20
|
sylib |
|- ( ph -> `' `' ( Y ( Sect ` C ) X ) = ( Y ( Sect ` C ) X ) ) |
22 |
12 21
|
eqtrd |
|- ( ph -> `' ( Y ( Sect ` O ) X ) = ( Y ( Sect ` C ) X ) ) |
23 |
1 2 3 4 5 9 10
|
oppcsect2 |
|- ( ph -> ( X ( Sect ` O ) Y ) = `' ( X ( Sect ` C ) Y ) ) |
24 |
22 23
|
ineq12d |
|- ( ph -> ( `' ( Y ( Sect ` O ) X ) i^i ( X ( Sect ` O ) Y ) ) = ( ( Y ( Sect ` C ) X ) i^i `' ( X ( Sect ` C ) Y ) ) ) |
25 |
8 24
|
eqtrid |
|- ( ph -> ( ( X ( Sect ` O ) Y ) i^i `' ( Y ( Sect ` O ) X ) ) = ( ( Y ( Sect ` C ) X ) i^i `' ( X ( Sect ` C ) Y ) ) ) |
26 |
2 1
|
oppcbas |
|- B = ( Base ` O ) |
27 |
2
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
28 |
3 27
|
syl |
|- ( ph -> O e. Cat ) |
29 |
26 7 28 4 5 10
|
invfval |
|- ( ph -> ( X J Y ) = ( ( X ( Sect ` O ) Y ) i^i `' ( Y ( Sect ` O ) X ) ) ) |
30 |
1 6 3 5 4 9
|
invfval |
|- ( ph -> ( Y I X ) = ( ( Y ( Sect ` C ) X ) i^i `' ( X ( Sect ` C ) Y ) ) ) |
31 |
25 29 30
|
3eqtr4d |
|- ( ph -> ( X J Y ) = ( Y I X ) ) |