| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcsect.b |
|- B = ( Base ` C ) |
| 2 |
|
oppcsect.o |
|- O = ( oppCat ` C ) |
| 3 |
|
oppcsect.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
oppcsect.x |
|- ( ph -> X e. B ) |
| 5 |
|
oppcsect.y |
|- ( ph -> Y e. B ) |
| 6 |
|
oppciso.s |
|- I = ( Iso ` C ) |
| 7 |
|
oppciso.t |
|- J = ( Iso ` O ) |
| 8 |
|
eqid |
|- ( Inv ` C ) = ( Inv ` C ) |
| 9 |
|
eqid |
|- ( Inv ` O ) = ( Inv ` O ) |
| 10 |
1 2 3 4 5 8 9
|
oppcinv |
|- ( ph -> ( X ( Inv ` O ) Y ) = ( Y ( Inv ` C ) X ) ) |
| 11 |
10
|
dmeqd |
|- ( ph -> dom ( X ( Inv ` O ) Y ) = dom ( Y ( Inv ` C ) X ) ) |
| 12 |
2 1
|
oppcbas |
|- B = ( Base ` O ) |
| 13 |
2
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 14 |
3 13
|
syl |
|- ( ph -> O e. Cat ) |
| 15 |
12 9 14 4 5 7
|
isoval |
|- ( ph -> ( X J Y ) = dom ( X ( Inv ` O ) Y ) ) |
| 16 |
1 8 3 5 4 6
|
isoval |
|- ( ph -> ( Y I X ) = dom ( Y ( Inv ` C ) X ) ) |
| 17 |
11 15 16
|
3eqtr4d |
|- ( ph -> ( X J Y ) = ( Y I X ) ) |