| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
opphl.l |
|- L = ( LineG ` G ) |
| 6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
| 7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
oppcom.a |
|- ( ph -> A e. P ) |
| 9 |
|
oppcom.b |
|- ( ph -> B e. P ) |
| 10 |
|
oppcom.o |
|- ( ph -> A O B ) |
| 11 |
1 2 3 4 8 9
|
islnopp |
|- ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) ) |
| 12 |
10 11
|
mpbid |
|- ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) |
| 13 |
12
|
simpld |
|- ( ph -> ( -. A e. D /\ -. B e. D ) ) |
| 14 |
13
|
simprd |
|- ( ph -> -. B e. D ) |
| 15 |
13
|
simpld |
|- ( ph -> -. A e. D ) |
| 16 |
12
|
simprd |
|- ( ph -> E. t e. D t e. ( A I B ) ) |
| 17 |
7
|
ad2antrr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( A I B ) ) -> G e. TarskiG ) |
| 18 |
8
|
ad2antrr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( A I B ) ) -> A e. P ) |
| 19 |
7
|
adantr |
|- ( ( ph /\ t e. D ) -> G e. TarskiG ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ t e. D ) -> D e. ran L ) |
| 21 |
|
simpr |
|- ( ( ph /\ t e. D ) -> t e. D ) |
| 22 |
1 5 3 19 20 21
|
tglnpt |
|- ( ( ph /\ t e. D ) -> t e. P ) |
| 23 |
22
|
adantr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( A I B ) ) -> t e. P ) |
| 24 |
9
|
ad2antrr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( A I B ) ) -> B e. P ) |
| 25 |
|
simpr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( A I B ) ) -> t e. ( A I B ) ) |
| 26 |
1 2 3 17 18 23 24 25
|
tgbtwncom |
|- ( ( ( ph /\ t e. D ) /\ t e. ( A I B ) ) -> t e. ( B I A ) ) |
| 27 |
7
|
ad2antrr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( B I A ) ) -> G e. TarskiG ) |
| 28 |
9
|
ad2antrr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( B I A ) ) -> B e. P ) |
| 29 |
22
|
adantr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( B I A ) ) -> t e. P ) |
| 30 |
8
|
ad2antrr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( B I A ) ) -> A e. P ) |
| 31 |
|
simpr |
|- ( ( ( ph /\ t e. D ) /\ t e. ( B I A ) ) -> t e. ( B I A ) ) |
| 32 |
1 2 3 27 28 29 30 31
|
tgbtwncom |
|- ( ( ( ph /\ t e. D ) /\ t e. ( B I A ) ) -> t e. ( A I B ) ) |
| 33 |
26 32
|
impbida |
|- ( ( ph /\ t e. D ) -> ( t e. ( A I B ) <-> t e. ( B I A ) ) ) |
| 34 |
33
|
rexbidva |
|- ( ph -> ( E. t e. D t e. ( A I B ) <-> E. t e. D t e. ( B I A ) ) ) |
| 35 |
16 34
|
mpbid |
|- ( ph -> E. t e. D t e. ( B I A ) ) |
| 36 |
14 15 35
|
jca31 |
|- ( ph -> ( ( -. B e. D /\ -. A e. D ) /\ E. t e. D t e. ( B I A ) ) ) |
| 37 |
1 2 3 4 9 8
|
islnopp |
|- ( ph -> ( B O A <-> ( ( -. B e. D /\ -. A e. D ) /\ E. t e. D t e. ( B I A ) ) ) ) |
| 38 |
36 37
|
mpbird |
|- ( ph -> B O A ) |