| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppcthin.o |  |-  O = ( oppCat ` C ) | 
						
							| 2 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 3 | 1 2 | oppcbas |  |-  ( Base ` C ) = ( Base ` O ) | 
						
							| 4 | 3 | a1i |  |-  ( C e. ThinCat -> ( Base ` C ) = ( Base ` O ) ) | 
						
							| 5 |  | eqidd |  |-  ( C e. ThinCat -> ( Hom ` O ) = ( Hom ` O ) ) | 
						
							| 6 |  | simpl |  |-  ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) | 
						
							| 7 |  | simprr |  |-  ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) | 
						
							| 8 |  | simprl |  |-  ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) | 
						
							| 9 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 10 | 6 7 8 2 9 | thincmo |  |-  ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( y ( Hom ` C ) x ) ) | 
						
							| 11 | 9 1 | oppchom |  |-  ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) | 
						
							| 12 | 11 | eleq2i |  |-  ( f e. ( x ( Hom ` O ) y ) <-> f e. ( y ( Hom ` C ) x ) ) | 
						
							| 13 | 12 | mobii |  |-  ( E* f f e. ( x ( Hom ` O ) y ) <-> E* f f e. ( y ( Hom ` C ) x ) ) | 
						
							| 14 | 10 13 | sylibr |  |-  ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( x ( Hom ` O ) y ) ) | 
						
							| 15 |  | thincc |  |-  ( C e. ThinCat -> C e. Cat ) | 
						
							| 16 | 1 | oppccat |  |-  ( C e. Cat -> O e. Cat ) | 
						
							| 17 | 15 16 | syl |  |-  ( C e. ThinCat -> O e. Cat ) | 
						
							| 18 | 4 5 14 17 | isthincd |  |-  ( C e. ThinCat -> O e. ThinCat ) |