Step |
Hyp |
Ref |
Expression |
1 |
|
oppcthin.o |
|- O = ( oppCat ` C ) |
2 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
3 |
1 2
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
4 |
3
|
a1i |
|- ( C e. ThinCat -> ( Base ` C ) = ( Base ` O ) ) |
5 |
|
eqidd |
|- ( C e. ThinCat -> ( Hom ` O ) = ( Hom ` O ) ) |
6 |
|
simpl |
|- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) |
7 |
|
simprr |
|- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
8 |
|
simprl |
|- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
9 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
10 |
6 7 8 2 9
|
thincmo |
|- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( y ( Hom ` C ) x ) ) |
11 |
9 1
|
oppchom |
|- ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) |
12 |
11
|
eleq2i |
|- ( f e. ( x ( Hom ` O ) y ) <-> f e. ( y ( Hom ` C ) x ) ) |
13 |
12
|
mobii |
|- ( E* f f e. ( x ( Hom ` O ) y ) <-> E* f f e. ( y ( Hom ` C ) x ) ) |
14 |
10 13
|
sylibr |
|- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( x ( Hom ` O ) y ) ) |
15 |
|
thincc |
|- ( C e. ThinCat -> C e. Cat ) |
16 |
1
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
17 |
15 16
|
syl |
|- ( C e. ThinCat -> O e. Cat ) |
18 |
4 5 14 17
|
isthincd |
|- ( C e. ThinCat -> O e. ThinCat ) |