| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcup.b |
|- B = ( Base ` D ) |
| 2 |
|
oppcup.c |
|- C = ( Base ` E ) |
| 3 |
|
oppcup.h |
|- H = ( Hom ` D ) |
| 4 |
|
oppcup.j |
|- J = ( Hom ` E ) |
| 5 |
|
oppcup.xb |
|- .xb = ( comp ` E ) |
| 6 |
|
oppcup.w |
|- ( ph -> W e. C ) |
| 7 |
|
oppcup.f |
|- ( ph -> F ( D Func E ) G ) |
| 8 |
|
oppcup.x |
|- ( ph -> X e. B ) |
| 9 |
|
oppcup.m |
|- ( ph -> M e. ( ( F ` X ) J W ) ) |
| 10 |
|
oppcup.o |
|- O = ( oppCat ` D ) |
| 11 |
|
oppcup.p |
|- P = ( oppCat ` E ) |
| 12 |
10 1
|
oppcbas |
|- B = ( Base ` O ) |
| 13 |
11 2
|
oppcbas |
|- C = ( Base ` P ) |
| 14 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
| 15 |
|
eqid |
|- ( Hom ` P ) = ( Hom ` P ) |
| 16 |
|
eqid |
|- ( comp ` P ) = ( comp ` P ) |
| 17 |
10 11 7
|
funcoppc |
|- ( ph -> F ( O Func P ) tpos G ) |
| 18 |
4 11
|
oppchom |
|- ( W ( Hom ` P ) ( F ` X ) ) = ( ( F ` X ) J W ) |
| 19 |
9 18
|
eleqtrrdi |
|- ( ph -> M e. ( W ( Hom ` P ) ( F ` X ) ) ) |
| 20 |
12 13 14 15 16 6 17 8 19
|
isup |
|- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) ) ) |
| 21 |
4 11
|
oppchom |
|- ( W ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) J W ) |
| 22 |
21
|
a1i |
|- ( ( ph /\ y e. B ) -> ( W ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) J W ) ) |
| 23 |
3 10
|
oppchom |
|- ( X ( Hom ` O ) y ) = ( y H X ) |
| 24 |
23
|
a1i |
|- ( ( ph /\ y e. B ) -> ( X ( Hom ` O ) y ) = ( y H X ) ) |
| 25 |
|
ovtpos |
|- ( X tpos G y ) = ( y G X ) |
| 26 |
25
|
fveq1i |
|- ( ( X tpos G y ) ` k ) = ( ( y G X ) ` k ) |
| 27 |
26
|
oveq1i |
|- ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( ( ( y G X ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) |
| 28 |
6
|
adantr |
|- ( ( ph /\ y e. B ) -> W e. C ) |
| 29 |
7
|
adantr |
|- ( ( ph /\ y e. B ) -> F ( D Func E ) G ) |
| 30 |
1 2 29
|
funcf1 |
|- ( ( ph /\ y e. B ) -> F : B --> C ) |
| 31 |
8
|
adantr |
|- ( ( ph /\ y e. B ) -> X e. B ) |
| 32 |
30 31
|
ffvelcdmd |
|- ( ( ph /\ y e. B ) -> ( F ` X ) e. C ) |
| 33 |
|
simpr |
|- ( ( ph /\ y e. B ) -> y e. B ) |
| 34 |
30 33
|
ffvelcdmd |
|- ( ( ph /\ y e. B ) -> ( F ` y ) e. C ) |
| 35 |
2 5 11 28 32 34
|
oppcco |
|- ( ( ph /\ y e. B ) -> ( ( ( y G X ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |
| 36 |
27 35
|
eqtrid |
|- ( ( ph /\ y e. B ) -> ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |
| 37 |
36
|
eqeq2d |
|- ( ( ph /\ y e. B ) -> ( g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 38 |
24 37
|
reueqbidv |
|- ( ( ph /\ y e. B ) -> ( E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 39 |
22 38
|
raleqbidv |
|- ( ( ph /\ y e. B ) -> ( A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 40 |
39
|
ralbidva |
|- ( ph -> ( A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 41 |
20 40
|
bitrd |
|- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |