Step |
Hyp |
Ref |
Expression |
1 |
|
oppcval.b |
|- B = ( Base ` C ) |
2 |
|
oppcval.h |
|- H = ( Hom ` C ) |
3 |
|
oppcval.x |
|- .x. = ( comp ` C ) |
4 |
|
oppcval.o |
|- O = ( oppCat ` C ) |
5 |
|
elex |
|- ( C e. V -> C e. _V ) |
6 |
|
id |
|- ( c = C -> c = C ) |
7 |
|
fveq2 |
|- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
8 |
7 2
|
eqtr4di |
|- ( c = C -> ( Hom ` c ) = H ) |
9 |
8
|
tposeqd |
|- ( c = C -> tpos ( Hom ` c ) = tpos H ) |
10 |
9
|
opeq2d |
|- ( c = C -> <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. = <. ( Hom ` ndx ) , tpos H >. ) |
11 |
6 10
|
oveq12d |
|- ( c = C -> ( c sSet <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. ) = ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) |
12 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
13 |
12 1
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
14 |
13
|
sqxpeqd |
|- ( c = C -> ( ( Base ` c ) X. ( Base ` c ) ) = ( B X. B ) ) |
15 |
|
fveq2 |
|- ( c = C -> ( comp ` c ) = ( comp ` C ) ) |
16 |
15 3
|
eqtr4di |
|- ( c = C -> ( comp ` c ) = .x. ) |
17 |
16
|
oveqd |
|- ( c = C -> ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) = ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) |
18 |
17
|
tposeqd |
|- ( c = C -> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) = tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) |
19 |
14 13 18
|
mpoeq123dv |
|- ( c = C -> ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) = ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) ) |
20 |
19
|
opeq2d |
|- ( c = C -> <. ( comp ` ndx ) , ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) >. = <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) |
21 |
11 20
|
oveq12d |
|- ( c = C -> ( ( c sSet <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) >. ) = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
22 |
|
df-oppc |
|- oppCat = ( c e. _V |-> ( ( c sSet <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) >. ) ) |
23 |
|
ovex |
|- ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) e. _V |
24 |
21 22 23
|
fvmpt |
|- ( C e. _V -> ( oppCat ` C ) = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
25 |
5 24
|
syl |
|- ( C e. V -> ( oppCat ` C ) = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
26 |
4 25
|
eqtrid |
|- ( C e. V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |