| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relfunc |
|- Rel ( C Func D ) |
| 2 |
1
|
brrelex12i |
|- ( F ( C Func D ) G -> ( F e. _V /\ G e. _V ) ) |
| 3 |
|
oppfvalg |
|- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 4 |
2 3
|
syl |
|- ( F ( C Func D ) G -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 5 |
|
oppfvallem |
|- ( F ( C Func D ) G -> ( Rel G /\ Rel dom G ) ) |
| 6 |
5
|
iftrued |
|- ( F ( C Func D ) G -> if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) = <. F , tpos G >. ) |
| 7 |
4 6
|
eqtrd |
|- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) |