Step |
Hyp |
Ref |
Expression |
1 |
|
oppggic.o |
|- O = ( oppG ` G ) |
2 |
|
oppgcntr.z |
|- Z = ( Cntr ` G ) |
3 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
4 |
1 3
|
oppgcntz |
|- ( ( Cntz ` G ) ` ( Base ` G ) ) = ( ( Cntz ` O ) ` ( Base ` G ) ) |
5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
6 |
5 3
|
cntrval |
|- ( ( Cntz ` G ) ` ( Base ` G ) ) = ( Cntr ` G ) |
7 |
6 2
|
eqtr4i |
|- ( ( Cntz ` G ) ` ( Base ` G ) ) = Z |
8 |
1 5
|
oppgbas |
|- ( Base ` G ) = ( Base ` O ) |
9 |
|
eqid |
|- ( Cntz ` O ) = ( Cntz ` O ) |
10 |
8 9
|
cntrval |
|- ( ( Cntz ` O ) ` ( Base ` G ) ) = ( Cntr ` O ) |
11 |
4 7 10
|
3eqtr3i |
|- Z = ( Cntr ` O ) |