| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppggic.o |
|- O = ( oppG ` G ) |
| 2 |
|
oppgcntr.z |
|- Z = ( Cntr ` G ) |
| 3 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 4 |
1 3
|
oppgcntz |
|- ( ( Cntz ` G ) ` ( Base ` G ) ) = ( ( Cntz ` O ) ` ( Base ` G ) ) |
| 5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 6 |
5 3
|
cntrval |
|- ( ( Cntz ` G ) ` ( Base ` G ) ) = ( Cntr ` G ) |
| 7 |
6 2
|
eqtr4i |
|- ( ( Cntz ` G ) ` ( Base ` G ) ) = Z |
| 8 |
1 5
|
oppgbas |
|- ( Base ` G ) = ( Base ` O ) |
| 9 |
|
eqid |
|- ( Cntz ` O ) = ( Cntz ` O ) |
| 10 |
8 9
|
cntrval |
|- ( ( Cntz ` O ) ` ( Base ` G ) ) = ( Cntr ` O ) |
| 11 |
4 7 10
|
3eqtr3i |
|- Z = ( Cntr ` O ) |