Description: Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppggic.o | |- O = ( oppG ` G ) | |
| Assertion | oppggic | |- ( G e. Grp -> G ~=g O ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oppggic.o | |- O = ( oppG ` G ) | |
| 2 | eqid | |- ( invg ` G ) = ( invg ` G ) | |
| 3 | 1 2 | invoppggim | |- ( G e. Grp -> ( invg ` G ) e. ( G GrpIso O ) ) | 
| 4 | brgici | |- ( ( invg ` G ) e. ( G GrpIso O ) -> G ~=g O ) | |
| 5 | 3 4 | syl | |- ( G e. Grp -> G ~=g O ) |