Description: Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oppggic.o | |- O = ( oppG ` G ) |
|
Assertion | oppggic | |- ( G e. Grp -> G ~=g O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppggic.o | |- O = ( oppG ` G ) |
|
2 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
3 | 1 2 | invoppggim | |- ( G e. Grp -> ( invg ` G ) e. ( G GrpIso O ) ) |
4 | brgici | |- ( ( invg ` G ) e. ( G GrpIso O ) -> G ~=g O ) |
|
5 | 3 4 | syl | |- ( G e. Grp -> G ~=g O ) |