Step |
Hyp |
Ref |
Expression |
1 |
|
oppgbas.1 |
|- O = ( oppG ` R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
1 2
|
oppgbas |
|- ( Base ` R ) = ( Base ` O ) |
4 |
3
|
a1i |
|- ( R e. Grp -> ( Base ` R ) = ( Base ` O ) ) |
5 |
|
eqidd |
|- ( R e. Grp -> ( +g ` O ) = ( +g ` O ) ) |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
1 6
|
oppgid |
|- ( 0g ` R ) = ( 0g ` O ) |
8 |
7
|
a1i |
|- ( R e. Grp -> ( 0g ` R ) = ( 0g ` O ) ) |
9 |
|
grpmnd |
|- ( R e. Grp -> R e. Mnd ) |
10 |
1
|
oppgmnd |
|- ( R e. Mnd -> O e. Mnd ) |
11 |
9 10
|
syl |
|- ( R e. Grp -> O e. Mnd ) |
12 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
13 |
2 12
|
grpinvcl |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) |
14 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
15 |
|
eqid |
|- ( +g ` O ) = ( +g ` O ) |
16 |
14 1 15
|
oppgplus |
|- ( ( ( invg ` R ) ` x ) ( +g ` O ) x ) = ( x ( +g ` R ) ( ( invg ` R ) ` x ) ) |
17 |
2 14 6 12
|
grprinv |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( ( invg ` R ) ` x ) ) = ( 0g ` R ) ) |
18 |
16 17
|
eqtrid |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( ( invg ` R ) ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) |
19 |
4 5 8 11 13 18
|
isgrpd2 |
|- ( R e. Grp -> O e. Grp ) |